Reputation: 83
Let's assume I have a data frame as bellow:
df <- as.data.frame(matrix(seq(1,20,1),nrow=4), byrow=TRUE)
colnames(df) <- c("X1","X2","X3","X4","X5")
rownames(df) <- as.Date(c("2020-01-02","2020-01-03","2020-01-04","2020-01-05"))
df
X1 X2 X3 X4 X5
2020-01-02 1 2 3 4 5
2020-01-03 6 7 8 9 10
2020-01-04 11 12 13 14 15
2020-01-05 16 17 18 19 20
I want to subtract all columns from the first column X1
and store it in the same column. I have tried doing
for(i in colnames(df)){
df[i] <- lapply(df[i], function(x) x-df["X1"])
}
But it only applies it to the first column. How can I run it for all the columns?
Upvotes: 1
Views: 1088
Reputation: 76402
Here is a way with grep
:
i_col <- grep("X1", names(df))
df[] <- df - df[, i_col]
df
# X1 X2 X3 X4 X5
#2020-01-02 0 4 8 12 16
#2020-01-03 0 4 8 12 16
#2020-01-04 0 4 8 12 16
#2020-01-05 0 4 8 12 16
And another, with grep/sweep
. In fact, -
is sweep
's default function.
sweep(df, 1, df[[i_col]], check.margin = FALSE)
# X1 X2 X3 X4 X5
#2020-01-02 0 4 8 12 16
#2020-01-03 0 4 8 12 16
#2020-01-04 0 4 8 12 16
#2020-01-05 0 4 8 12 16
Upvotes: 0
Reputation: 72633
If you want to stick to lapply
you may do it like so:
df[] <- lapply(df, `-`, df$X1)
df
# X1 X2 X3 X4 X5
# 2020-01-02 0 4 8 12 16
# 2020-01-03 0 4 8 12 16
# 2020-01-04 0 4 8 12 16
# 2020-01-05 0 4 8 12 16
Upvotes: 1
Reputation: 39595
Try this base R
solution without loop. Just have in mind the position of columns:
#Data
df <- as.data.frame(matrix(seq(1,20,1),nrow=4), byrow=TRUE)
colnames(df) <- c("X1","X2","X3","X4","X5")
rownames(df) <- as.Date(c("2020-01-02","2020-01-03","2020-01-04","2020-01-05"))
#Set columns for difference
df[,2:5] <- df[,2:5]-df[,1]
Output:
X1 X2 X3 X4 X5
2020-01-02 1 4 8 12 16
2020-01-03 2 4 8 12 16
2020-01-04 3 4 8 12 16
2020-01-05 4 4 8 12 16
Or a more sophisticated way would be:
#Create index
#Var to substract
i1 <- which(names(df)=='X1')
#Vars to be substracted with X1
i2 <- which(names(df)!='X1')
#Compute
df[,i2]<-df[,i2]-df[,i1]
Output:
X1 X2 X3 X4 X5
2020-01-02 1 4 8 12 16
2020-01-03 2 4 8 12 16
2020-01-04 3 4 8 12 16
2020-01-05 4 4 8 12 16
Upvotes: 2