Reputation: 55
I have a Pandas dataframe with two columns, "id" (a unique identifier) and "date", that looks as follows:
test_df.head()
id date
0 N1 2020-01-31
1 N2 2020-02-28
2 N3 2020-03-10
I have created a custom Python function that, given two date strings, will compute the absolute number of days between those dates (with a given date format string e.g. %Y-%m-%d), as follows:
def days_distance(date_1, date_1_format, date_2, date_2_format):
"""Calculate the number of days between two given string dates
Args:
date_1 (str): First date
date_1_format (str): The format of the first date
date_2 (str): Second date
date_2_format (str): The format of the second date
Returns:
The absolute number of days between date1 and date2
"""
date1 = datetime.strptime(date_1, date_1_format)
date2 = datetime.strptime(date_2, date_2_format)
return abs((date2 - date1).days)
I would like to create a distance matrix that, for all pairs of IDs, will calculate the number of days between those IDs. Using the test_df
example above, the final time distance matrix should look as follows:
N1 N2 N3
N1 0 28 39
N2 28 0 11
N3 39 11 0
I am struggling to find a way to compute a distance matrix using a bespoke distance function, such as my days_distance()
function above, as opposed to a standard distance measure provided for example by SciPy.
Any suggestions?
Upvotes: 4
Views: 1655
Reputation: 71689
Let us try pdist
+ squareform
to create a square distance matrix representing the pair wise differences between the datetime objects, finally create a new dataframe from this square matrix:
from scipy.spatial.distance import pdist, squareform
i, d = test_df['id'].values, pd.to_datetime(test_df['date'])
df = pd.DataFrame(squareform(pdist(d[:, None])), dtype='timedelta64[ns]', index=i, columns=i)
Alternatively you can also calculate the distance matrix using numpy
broadcasting:
i, d = test_df['id'].values, pd.to_datetime(test_df['date']).values
df = pd.DataFrame(np.abs(d[:, None] - d), index=i, columns=i)
N1 N2 N3
N1 0 days 28 days 39 days
N2 28 days 0 days 11 days
N3 39 days 11 days 0 days
Upvotes: 2
Reputation: 1000
You can convert the date column to datetime format. Then create numpy array from the column. Then create a matrix with the array repeated 3 times. Then subtract the matrix with its transpose. Then convert the result to a dataframe
import pandas as pd
import numpy as np
from datetime import datetime
test_df = pd.DataFrame({'ID': ['N1', 'N2', 'N3'],
'date': ['2020-01-31', '2020-02-28', '2020-03-10']})
test_df['date_datetime'] = test_df.date.apply(lambda x : datetime.strptime(x, '%Y-%m-%d'))
date_array = np.array(test_df.date_datetime)
date_matrix = np.tile(date_array, (3,1))
date_diff_matrix = np.abs((date_matrix.T - date_matrix))
date_diff = pd.DataFrame(date_diff_matrix)
date_diff.columns = test_df.ID
date_diff.index = test_df.ID
>>> ID N1 N2 N3
ID
N1 0 days 28 days 39 days
N2 28 days 0 days 11 days
N3 39 days 11 days 0 days
Upvotes: 0