Reputation: 507
I have a df like this:
df = pd.DataFrame(
[
['A', 1],
['A', 1],
['A', 1],
['B', 2],
['B', 0],
['A', 0],
['A', 1],
['B', 1],
['B', 0]
], columns = ['key', 'val'])
df
print:
key val
0 A 1
1 A 1
2 A 1
3 B 2
4 B 0
5 A 0
6 A 1
7 B 1
8 B 0
I want to fill the rows after 2 in the val column (in the example all values in the val column from row 3 to 8 are replaced with nan).
I tried this:
df['val'] = np.where(df['val'].shift(-1) == 2, np.nan, df['val'])
and iterating over rows like this:
for row in df.iterrows():
df['val'] = np.where(df['val'].shift(-1) == 2, np.nan, df['val'])
but cant get it to fill nan forward.
Upvotes: 5
Views: 127
Reputation: 354
You can try :
ind = df.loc[df['val']==2].index
df.iloc[ind[0]:,1] = np.nan
Upvotes: 2
Reputation: 71689
You can use boolean indexing
with cummax
to fill nan
values:
df.loc[df['val'].eq(2).cummax(), 'val'] = np.nan
Alternatively you can also use Series.mask
:
df['val'] = df['val'].mask(lambda x: x.eq(2).cummax())
key val
0 A 1.0
1 A 1.0
2 A 1.0
3 B NaN
4 B NaN
5 A NaN
6 A NaN
7 B NaN
8 B NaN
Upvotes: 6
Reputation: 7693
Once you get index by df.index[df.val.shift(-1).eq(2)].item()
then you can use slicing
idx = df.index[df.val.shift(-1).eq(2)].item()
df.iloc[idx:, 1] = np.nan
df
key val
0 A 1.0
1 A 1.0
2 A NaN
3 B NaN
4 B NaN
5 A NaN
6 A NaN
7 B NaN
8 B NaN
Upvotes: 0