Reputation: 161
Say I have the following DataFrame:
data = pd.DataFrame({'id' : ['1','2','3','4','5'], 'group' : ['1','1','2','1','2'],
'state' : ['True','False','False','True','True'], 'value' : [11,12,5,8,3]})
I would like to create a new DataFrame, keeping 3 columns: groups ('1'
or '2'
), and averaging over the columns 'state'
and 'value'
, hence the DataFrame would be:
grouped_averaged = pd.DataFrame({'group' : ['1','2'], 'average_state' : [0.66,0.5], 'value' : [7,3]})
Upvotes: 4
Views: 3744
Reputation: 126
You should first create a filtered dataframe that filters your required dataframe. The algorithm would be to first create a list of values that you want to filter with then you would change the value of True and False to 1 and 0 in state and then group them with an aggregate function.
df = pd.DataFrame({'id' : ['1','2','3','4','5'], 'group' : ['1','1','2','1','2'],
'state' : ['True','False','False','True','True'], 'value' : [11,12,5,8,3]})
filter_values=['1','2']
df=df.loc[df['group'].isin(filter_values)]
df['state']=(df['state']=="True").astype(int)
df['state']=(df['state']=="False").astype(int)
aggregate_functions={'state':'mean','value':'mean'}
clean_df=df.groupby(['group']).aggregate(aggregate_functions)
I haven't ran it on my pc but you can test it but this algorithm should work.
Upvotes: 0
Reputation: 150745
You just need groupby
:
data['state'] = data['state'].eq('True')
data.drop('id',axis=1).groupby('group', as_index=False).mean()
Output:
group state value
0 1 0.666667 10.333333
1 2 0.500000 4.000000
Upvotes: 5