MSS
MSS

Reputation: 3623

Replace each value of string appearing in pandas dataframe with separate floating value

I have a pandas dataframe which looks like this:

Input dataframe:

   A    B   C 
0   m   h   c 
1   l   c   m 
2   h   m   l 
3   c   l   h 
4   m   c   m

I want to replace each occurrence of each l,m,h,and c values with floating point numbers in a given range. The range of values for each string is as follows:

Range:

l: 0.0  - 0.25
m: 0.25 - 0.5
h: 0.5  - 0.75
c: 0.75 - 1.0

Each occurrence should have a value in the given range but it should not repeat. The sample output dataframe should look like this after transformation:

Output dataframe:

       A       B      C
 0  0.31    0.51    0.76
 1  0.12    0.56    0.28
 2  0.61    0.35    0.21
 3  0.8     0.16    0.71
 4  0.46    0.72    0.37

I have tried one approach using transform. But its not fully working as values are repeated in the columns:

def _foo(col):
    w = {'l': np.random.uniform(0.0,0.25),
            'm':np.random.uniform(0.25,0.5),
            'h': np.random.uniform(0.5,0.75), 
            'c':np.random.uniform(0.75,1.0)}
    col = col.replace(w)
    return col

df = df.transform(_foo)

If I use apply method then also the same problem will happen and values are repeated along the rows. It also doesnt have good performance as the actual dataframe has 50-60 thousand rows. So the apply will run for that many times.

def _bar(row):
        w = {'l': np.random.uniform(0.0,0.25),
                'm':np.random.uniform(0.25,0.5),
                'h': np.random.uniform(0.5,0.75), 
                'c':np.random.uniform(0.75,1.0)}
        row= row.replace(w)
        return row
    
 df = df.apply(_bar, axis=1)

Any suggestions on how to do this efficiently in pandas?

Upvotes: 2

Views: 80

Answers (3)

yatu
yatu

Reputation: 88226

Here's a vectorized approach aimed at performance:

def map_by_val(df, l):
    # dictionary to map dataframe values to index
    d = {j:i for i,j in enumerate(l)}
    # replace using dictionary
    a = df.replace(d).to_numpy()
    # since the ranges are a sequence, we can create a 
    # linspace, and divide in 10 bins each range
    rep = np.linspace(0.0, 1.0, 40).reshape(4,-1)
    # random integer indexing in each rows
    ix = np.random.randint(0,rep.shape[1],a.shape)
    # advanced indexing of the array using random integers per row
    out = rep[a.ravel(), ix.ravel()].reshape(a.shape).round(2)
    return pd.DataFrame(out)

l = ['l','m','h','c']
map_by_val(df, l)

      0     1     2
0  0.49  0.74  0.87
1  0.23  0.90  0.49
2  0.67  0.49  0.18
3  0.79  0.21  0.56
4  0.46  0.87  0.36

Benchmark

The object dtype unfortunately limits the performance of the vectorized method, since initially DataFrame.replace is called to map the values using a dictionary. Both this answer and the stack+groupby answer perform quite similarly:

l = ['l','m','h','c']

ranges = {'l': (0,0.25),
          'm': (0.25, 0.5),
          'h': (0.5,0.75),
          'c':(0.75,1)}

def get_rand(x):
    lower, upper = ranges[x.iloc[0]]
    return np.random.uniform(lower, upper, len(x))

def stack_groupby(df):
    s = df.stack()
    return s.groupby(s).transform(get_rand).unstack()

plt.figure(figsize=(12,6))

perfplot.show(
    setup=lambda n: pd.concat([df]*n, axis=0).reset_index(drop=True), 

    kernels=[
        lambda s: s.applymap(lambda x : np.random.uniform(*ranges[x],1)[0]),
        lambda s: map_by_val(s, l),
        lambda s: stack_groupby(s)
    ],

    labels=['applymap', 'map_by_val', 'stack_groupby'],
    n_range=[2**k for k in range(0, 17)],
    xlabel='N',
    equality_check=None
)

enter image description here

Upvotes: 3

BENY
BENY

Reputation: 323226

May try

out = df.applymap(lambda x : np.random.uniform(*ranges[x],1)[0])
          A         B         C
0  0.399545  0.592302  0.862708
1  0.135859  0.873516  0.381962
2  0.665365  0.410010  0.127253
3  0.936032  0.241266  0.686508
4  0.273130  0.839988  0.391465

Upvotes: 1

Quang Hoang
Quang Hoang

Reputation: 150735

Let's try:

s = df.stack()

ranges = {'l': (0,0.25),
          'm': (0.25, 0.5),
          'h': (0.5,0.75),
          'c':(0.75,1)}

def get_rand(x):
    lower, upper = ranges[x.iloc[0]]
    return np.random.uniform(lower, upper, len(x))


s.groupby(s).transform(get_rand).unstack()

Output:

          A         B         C
0  0.351150  0.673156  0.829484
1  0.095481  0.836520  0.258559
2  0.599817  0.282766  0.048788
3  0.851617  0.010585  0.501335
4  0.422449  0.997759  0.287950

Upvotes: 1

Related Questions