Reputation: 1061
I am new to Dash. I am trying to plot a simple line plot and add a dropdown to change the data which comes from a dataframe (which is nested in a dictionary with other dataframes). Here is the dataframe:
df_vals['corn']
time 2m_temp_prod 2m_temp_area total_precip_prod total_precip_area
0 2020-09-19 00:00:00 299.346777 299.799234 0.000000 0.000000
1 2020-09-19 06:00:00 294.039512 294.443352 0.191070 0.286952
2 2020-09-19 12:00:00 292.959274 293.182931 0.155765 0.216606
3 2020-09-19 18:00:00 301.318046 301.767516 0.421768 0.485691
4 2020-09-20 00:00:00 300.623567 300.979650 0.363572 0.501164
... ... ... ... ... ...
56 2020-10-03 00:00:00 301.177141 301.052273 0.371209 0.408515
57 2020-10-03 06:00:00 295.874298 295.720135 0.281793 0.300564
58 2020-10-03 12:00:00 293.838787 293.686738 0.586887 0.549365
59 2020-10-03 18:00:00 302.384474 302.191334 0.492712 0.493798
60 2020-10-04 00:00:00 300.920766 300.817993 0.522374 0.531138
Here is the code where I attempt the plot.
app = JupyterDash(__name__)
cols=df_vals['corn'].columns[1:]
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(
id='variables',
options=[{'label': i, 'value': i} for i in cols],
value='2m_temp_prod'
)
]),
dcc.Graph(id='plot')])
])
@app.callback(
Output('plot', 'figure'),
[Input('variables', 'value')])
def update_graph(variable_name):
fig=px.line(x=df_vals['corn']['time'], y=df_vals['corn'][variable_name])
return fig
app.run_server(mode='inline')
This makes a plot with the correct dropdown options, but there is no data being plotted. What am I doing wrong here? Trying to follow a tutorial on the Dash website, but appear to be tripping up something.
Upvotes: 2
Views: 497
Reputation: 61114
You definitely seem to be close to a solution here. Iactually think that you've only forgotten to import plotly.express as px
. I took the time to make a proper data sample out of the data you provided in the question. And without any information of your imports I just had to go for my standard plotly and JupyteDash imports. Anyway, the snippet below will produce the following plot. And please take a look at how I've set up your dataframe. You can learn to make the same setup if you invest the few minutes it takes to read this post.
Dropdown selection = '2m_temp_prod'
**Dropdown selection = 'total_precip_prod''
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
import numpy as np
from plotly.subplots import make_subplots
import plotly.express as px
df=pd.DataFrame({'time':{0:'2020-09-1900:00:00',
1:'2020-09-1906:00:00',
2:'2020-09-1912:00:00',
3:'2020-09-1918:00:00',
4:'2020-09-2000:00:00',
5:'2020-10-0300:00:00',
6:'2020-10-0306:00:00',
7:'2020-10-0312:00:00',
8:'2020-10-0318:00:00',
60:'2020-10-0400:00:00'},
'2m_temp_prod':{0:299.346777,
1:294.039512,
2:292.95927400000005,
3:301.318046,
4:300.623567,
5:301.177141,
6:295.874298,
7:293.838787,
8:302.384474,
60:300.920766},
'2m_temp_area':{0:299.799234,
1:294.443352,
2:293.182931,
3:301.767516,
4:300.97965,
5:301.052273,
6:295.720135,
7:293.686738,
8:302.191334,
60:300.817993},
'total_precip_prod':{0:0.0,
1:0.19107000000000002,
2:0.15576500000000001,
3:0.42176800000000003,
4:0.363572,
5:0.371209,
6:0.28179299999999996,
7:0.5868869999999999,
8:0.492712,
60:0.522374},
'total_precip_area':{0:0.0,
1:0.286952,
2:0.216606,
3:0.485691,
4:0.501164,
5:0.408515,
6:0.300564,
7:0.549365,
8:0.49379799999999996,
60:0.531138}})
df_vals = {'corn':df}
app = JupyterDash(__name__)
cols=df_vals['corn'].columns[1:]
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(
id='variables',
options=[{'label': i, 'value': i} for i in cols],
value='2m_temp_prod'
)
]),
dcc.Graph(id='plot')])
])
@app.callback(
Output('plot', 'figure'),
[Input('variables', 'value')])
def update_graph(variable_name):
fig=px.line(x=df_vals['corn']['time'], y=df_vals['corn'][variable_name])
fig.update_layout(template='plotly_dark')
return fig
app.run_server(mode='inline', debug=True)
Upvotes: 2