Reputation: 4937
I have the panda dataframe in python below.
full_name serial Date_YMD prc1 prc2 volume
bottle_a AX80 20200922 12874.50 12927.75 61023.0
bottle_a AX80 20200923 12878.50 12926.75 61023.0
bottle_a AX80 20200924 12872.50 12928.75 61023.0
bottle_a AX80 20200925 12885.50 12984.25 62295.0
bottle_a AX80 20200926 12880.00 13000.00 14224.0
I want to detect which row falls on a Saturday based on column Date_YMD
. Find out the volume
value on this Saturday and replace it with double the value. For the table above, it should be 14224
belonging to row with Date_YMD 20200926
.
The final dataframe should look something like this;
full_name serial Date_YMD prc1 prc2 volume
bottle_a AX80 20200922 12874.50 12927.75 61023.0
bottle_a AX80 20200923 12878.50 12926.75 61023.0
bottle_a AX80 20200924 12872.50 12928.75 61023.0
bottle_a AX80 20200925 12885.50 12984.25 62295.0
bottle_a AX80 20200926 12880.00 13000.00 28448.0
I am using python 3.8.
Upvotes: 2
Views: 32
Reputation: 862921
Convert column to datetimes and then multiple values by selected compared with Series.dt.dayofweek
and DataFrame.loc
:
df['Date_YMD'] = pd.to_datetime(df['Date_YMD'], format='%Y%m%d')
df.loc[df['Date_YMD'].dt.dayofweek.eq(5), 'volume'] *= 2
print (df)
full_name serial Date_YMD prc1 prc2 volume
0 bottle_a AX80 2020-09-22 12874.5 12927.75 61023.0
1 bottle_a AX80 2020-09-23 12878.5 12926.75 61023.0
2 bottle_a AX80 2020-09-24 12872.5 12928.75 61023.0
3 bottle_a AX80 2020-09-25 12885.5 12984.25 62295.0
4 bottle_a AX80 2020-09-26 12880.0 13000.00 28448.0
Upvotes: 2