Reputation: 23
I'm trying to write a non-recursive Java method called showStar
, which takes a string, and generates ALL possible combinations of that string without the mask “*” characters.
receiving this as an input "1011*00*10",
the method `showStar` will display output like:
1011000010
1011000110
1011100010
1011100110
I tried this way, however, as soon as the number of possible cases is more than the String length, the output is not exact.
Here is my code.
public static void showStar(String s){
String save;
int count = 0;
int poss;
save = s.replace('*','0');
StringBuilder myString = new StringBuilder(save);
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '*' && myString.charAt(i) == '0') {
myString.setCharAt(i, '1');
System.out.println(myString);
}
}
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '*' && myString.charAt(i) == '1') {
myString.setCharAt(i, '0');
System.out.println(myString);
}
}
}
Upvotes: 2
Views: 85
Reputation: 19565
Here a recursive algoritm works just perfectly:
x = str.indexOf('*');
(x == -1)
, you just print the string and returnshowStar()
recursively for both replacementspublic static void showStar(String str) {
int x = str.indexOf('*');
if(x == -1) {
System.out.println(str);
return;
}
String prefix = str.substring(0, x);
String suffix = str.substring(x + 1);
for (char i = '0'; i <= '1'; i++) {
showStar(prefix + i + suffix);
}
}
Update
In non-recursive implementation we need to collect the asterisk positions, then prepare a binary representation and set appropriate bits at the known positions:
public static void showStar(String str) {
int[] xs = IntStream.range(0, str.length())
.filter(i -> str.charAt(i) == '*')
.toArray();
int num = (int) Math.pow(2, xs.length); // 2^n variants for n asterisks
String format = xs.length > 0 ? "%" + xs.length + "s" : "%s"; // fix if no '*'
for (int i = 0; i < num; i++) {
String bin = String.format(format, Integer.toBinaryString(i))
.replace(' ', '0'); // pad leading zeros
StringBuilder sb = new StringBuilder(str);
// set 0 or 1 in place of asterisk(s)
for (int j = 0; j < xs.length; j++) {
sb.setCharAt(xs[j], bin.charAt(j));
}
System.out.println(sb);
}
}
Upvotes: 1
Reputation: 9085
Say there are k *s. Then there are 2^k solutions. You can generate these by copying the bits from the integers 0 - 2^k-1 in order. (adding sufficient leading zeroes)
E.g. 1**1:
0 = 00 => 1001
1 = 01 => 1011
2 = 10 => 1101
3 = 11 => 1111
Upvotes: 2