Reputation: 225
Hi i am using nested for loops to find compatible blood types in two data sets. My datasets :
#IDR= c(seq(1,4))
#BTR=c("A","B","AB","O")
#data_R=data.frame(IDR,BTR,stringsAsFactors=FALSE)
#IDD= c(seq(1,8))
#BTD= c(rep("A", each=2),rep("B", each=2),rep("AB", each=2),rep("O", each=2))
#WD= c(rep(0.25, each=2),rep(0.125, each=2),rep(0.125, each=2),rep(0.5, each=2))
#data_D=data.frame(IDD,BTD,WD,stringsAsFactors=FALSE)
# data_R
IDR BTR
1 1 A
2 2 B
3 3 AB
4 4 O
# data_D
IDD BTD WD
1 1 A 0.250
2 2 A 0.250
3 3 B 0.125
4 4 B 0.125
5 5 AB 0.125
6 6 AB 0.125
7 7 O 0.500
8 8 O 0.500
What i am trying to do is to verify for each row from data_R that i have a compatible blood type in data_D,For instance: if i have BTR=AB then i would like to print all the values of WD in data_D (because AB is compatible with A,B,AB and O), if i have BTR=A then i would like to print the values of WD in data_D that corresponds to only A and O, if i have BTR=B then i would like to print the values of WD in data_D that corresponds to only B and O, And finally if i have BTR=O then i would like to print only the values of WD in data_D that corresponds to O.
here is the code i wrote but the output does not have the results i wanted
for (i in 1:nrow(data_R)) {
for (j in 1:nrow(data_D)) {
if(BTR[i] =="AB"){
if(BTD[j]=="A" || BTD[j]=="B" || BTD[j]=="AB" || BTD[j]=="O"){
output=as.vector(WD)
}
}else if(BTR[i] =="A"){
if(BTD[j]=="A" || BTD[j]=="O"){
output=as.vector(WD)
}
}else if(BTR[i] =="B"){
if(BTD[j]=="B" || BTD[j]=="O"){
output=as.vector(WD)
}
}else if(BTR[i] =="O"){
if(BTD[j] =="O"){
output=as.vector(WD)
}
}
}
}
output
and that is the output i got: [1] 0.250 0.250 0.250 0.250 0.125 0.125 0.500 0.500
I was only able to get the output (WRONG), and i would appreciate any help to fix this problem and display more readable (taking info from both datasets) output like :
BTR BTD output
1 A A 0.250
2 A A 0.250
3 A O 0.500
4 A O 0.500
5 B B 0.125
6 B B 0.125
7 B O 0.500
8 B O 0.500
9 AB A 0.250
10 AB A 0.250
11 AB B 0.125
12 AB B 0.125
13 AB AB 0.125
14 AB AB 0.125
15 AB O 0.500
16 AB O 0.500
17 O O 0.500
18 O O 0.500
I apologize in advance if my question is long i just wanna make sure i explained it well. Thank you in advance for your help.
Upvotes: 1
Views: 65
Reputation: 160447
You just need two merges and an intermediate data.frame:
compatible <- data.frame(
BTR = c(rep("AB", 4), rep("A", 2), rep("B", 2), "O"),
BTD = c("AB","A","B","O", "A","O", "B","O", "O")
)
compatible
# BTR BTD
# 1 AB AB
# 2 AB A
# 3 AB B
# 4 AB O
# 5 A A
# 6 A O
# 7 B B
# 8 B O
# 9 O O
The first step provides all possible donors for each recipient:
tmp <- merge(data_R, compatible, by = "BTR", all.x = TRUE, sort = FALSE)
tmp
# BTR IDR BTD
# 1 A 1 A
# 2 A 1 O
# 3 B 2 B
# 4 B 2 O
# 5 AB 3 AB
# 6 AB 3 A
# 7 AB 3 B
# 8 AB 3 O
# 9 O 4 O
The second merge brings in the available donors:
merge(tmp, data_D, by = "BTD")
# BTD BTR IDR IDD WD
# 1 A A 1 1 0.250
# 2 A A 1 2 0.250
# 3 A AB 3 1 0.250
# 4 A AB 3 2 0.250
# 5 AB AB 3 5 0.125
# 6 AB AB 3 6 0.125
# 7 B B 2 3 0.125
# 8 B B 2 4 0.125
# 9 B AB 3 3 0.125
# 10 B AB 3 4 0.125
# 11 O B 2 7 0.500
# 12 O B 2 8 0.500
# 13 O O 4 7 0.500
# 14 O O 4 8 0.500
# 15 O A 1 7 0.500
# 16 O A 1 8 0.500
# 17 O AB 3 7 0.500
# 18 O AB 3 8 0.500
Note that the order is different but your expected output is in there.
While this is using base R, other packages provide some more control over merging. I suggest you look at How to join (merge) data frames (inner, outer, left, right) and https://stackoverflow.com/a/6188334/3358272 to learn about joins (they are a very powerful data-manipulation mechanism!), and consider dplyr
or data.table
for facilitating this flow:
library(dplyr)
left_join(data_R, compatible, by = "BTR") %>%
left_join(data_D, by = "BTD")
library(data.table)
data_RDT <- as.data.table(data_R)
data_DDT <- as.data.table(data_D)
compatible <- as.data.table(compatible)
compatible[data_RDT, on = .(BTR)][data_DDT, on = .(BTD), allow.cartesian = TRUE]
Upvotes: 1