Reputation: 299
library(ggplot2)
library(fitdistrplus)
set.seed(1)
dat <- data.frame(n = rlnorm(1000))
# binwidth
bw = 0.2
# fit a lognormal distribution
fit_params <- fitdistr(dat$n,"lognormal")
ggplot(dat, aes(n)) +
geom_histogram(aes(y = ..density..), binwidth = bw, colour = "black") +
stat_function(fun = dlnorm, size = 1, color = 'gray',
args = list(mean = fit_params$estimate[1], sd = fit_params$estimate[2]))
# my defined function
myfun <- function(x, a, b) 1/(sqrt(2*pi*b(x-1)))*exp(-0.5*((log(x-a)/b)^2)) # a and b are meanlog and sdlog resp.
I'd like to fit a modified lognormal defined by myfun
to a density histogram. How do I add this function?
Upvotes: 2
Views: 275
Reputation: 39613
Maybe you are looking for this. Some values can not appear because of the domain of your myfun
:
library(ggplot2)
library(fitdistrplus)
set.seed(1)
dat <- data.frame(n = rlnorm(1000))
# binwidth
bw = 0.2
# fit a lognormal distribution
fit_params <- fitdistr(dat$n,"lognormal")
# my defined function
myfun <- function(x, a, b) 1/(sqrt(2*pi*b*(x-1)))*exp(-0.5*((log(x-a)/b)^2))
# a and b are meanlog and sdlog resp.
#Plot
ggplot(dat, aes(n)) +
geom_histogram(aes(y = ..density..), binwidth = bw, colour = "black") +
stat_function(fun = myfun, size = 1, color = 'gray',
args = list(a = fit_params$estimate[1], b = fit_params$estimate[2]))
Output:
Upvotes: 2