yyz_vanvlet
yyz_vanvlet

Reputation: 191

I need to transform every element in a list of a column to a new column in python pandas

I have a dataframe in Python that look likethe following:

   Name   Hobbies
0  Paul   ["Watch_NBA", "Play_PS4"]
1  Jeff   ["Play_hockey", "Read", "Play_PS4"]
2  Kyle   ["Sleep", "Watch_NBA"]

I need to transform every element of the list in a new column and assign the value of 0 or 1 if it appears in the original list. The result show be the following:

   Name   Watch_NBA  Play_PS4 Play_hockey Read Sleep
0  Paul       1          1        0        0     0
1  Jeff       0          1        1        1     0
2  Kyle       1          0        0        0     1

Someone knows how i could to this. Take in mind that i will use a lot of Hobbies in the column, so it show be a little automated and not hardcoded. Thanks!!!

Upvotes: 1

Views: 365

Answers (4)

inspectorG4dget
inspectorG4dget

Reputation: 113905

In [86]: df                                                                                                                                                                                                                                                                      
Out[86]: 
   Name              Hobbies
0  Paul           [NBA, PS4]
1  Jeff  [Hockey, Read, PS4]
2  Kyle         [Sleep, NBA]

In [87]: df['dummy'] = 1                                                                                                                                                                                                                                                         

In [88]: df.explode("Hobbies").pivot(index='Name', columns='Hobbies', values='dummy').fillna(value=0)                                                                                                                                                                            
Out[88]: 
Hobbies  Hockey  NBA  PS4  Read  Sleep
Name                                  
Jeff        1.0  0.0  1.0   1.0    0.0
Kyle        0.0  1.0  0.0   0.0    1.0
Paul        0.0  1.0  1.0   0.0    0.0

Upvotes: 1

Yaakov Bressler
Yaakov Bressler

Reputation: 12018

get_dummies() is good but sklearn's MultiLabelBinarizer has better performance:

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()
a = mlb.fit_transform(df["Hobbies"])
df_expanded = pd.DataFrame(a, columns=mlb.classes_, index=df.index)

# merge them using the following:
df_merged = df.merge(df_expanded, left_index=True, right_index=True)

print(df_merged)

index   Name    Hobbies                         Play_PS4    Play_hockey Read    Sleep   Watch_NBA
0       Paul    [Watch_NBA, Play_PS4]           1           0           0       0       1
1       Jeff    [Play_hockey, Read, Play_PS4]   1           1           1       0       0
2       Kyle    [Sleep, Watch_NBA]              0           0           0       1       1

Upvotes: 2

Soumendra Mishra
Soumendra Mishra

Reputation: 3653

You can try this:

n = df['Name']
df = df['Hobbies'].apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
df.insert(0, 'Name', n)
print(df)

Output:

   Name  Watch_NBA  Play_PS4  Play_hockey  Read  Sleep
0  Paul          1         1            0     0      0
1  Jeff          0         1            1     1      0
2  Kyle          1         0            0     0      1

Upvotes: 0

noah
noah

Reputation: 2776

You want the get_dummies() method. Documentation here.

For your example:

names = df.Name
df = pd.get_dummies(df.Hobbies.apply(pd.Series).stack()).sum(level=0)
df.insert(0, 'Name', names)

#output:
   Name  Play_PS4  Play_hockey  Read  Sleep  Watch_NBA
0  Paul         1            0     0      0          1
1  Jeff         1            1     1      0          0
2  Kyle         0            0     0      1          1

Upvotes: 1

Related Questions