Reputation: 17164
How can use use the 'Recall' and other metrics in keras classifier. The following code only works for accuracy but if I change the metric to recall it fails.
"""
[('numpy', '1.19.1'),
('pandas', '1.1.1'),
('sklearn', '0.23.2'),
('tensorflow', '2.3.0'),
('keras', '2.4.3')]
"""
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers.core import Dense
SEED = 100
np.random.seed(100)
X = np.random.random((20, 3))
y = np.random.randint(0,2,size=20)
print(x.shape, y.shape) # (20, 3) (20,)
n_inputs = X.shape[1]
model = Sequential([
Dense(n_inputs, input_shape=(n_inputs, ), activation='relu'),
Dense(32, activation='relu'),
Dense(2, activation='softmax')
])
METRIC = 'Recall' # Recall fails
# METRIC = 'accuracy' # accuracy works
model.compile('adam',loss='binary_crossentropy',metrics=[METRIC])
model.fit(X, y,validation_split=0.2,epochs=1)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-b372311b0ed4> in <module>
38 epochs=10,
39 shuffle=True,
---> 40 verbose=5)
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
821 # This is the first call of __call__, so we have to initialize.
822 initializers = []
--> 823 self._initialize(args, kwds, add_initializers_to=initializers)
824 finally:
825 # At this point we know that the initialization is complete (or less
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
695 self._concrete_stateful_fn = (
696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 697 *args, **kwds))
698
699 def invalid_creator_scope(*unused_args, **unused_kwds):
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2853 args, kwargs = None, None
2854 with self._lock:
-> 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2856 return graph_function
2857
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
-> 3213 graph_function = self._create_graph_function(args, kwargs)
3214 self._function_cache.primary[cache_key] = graph_function
3215 return graph_function, args, kwargs
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
--> 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
598 # __wrapped__ allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602
~/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
ValueError: in user code:
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:789 run_step **
outputs = model.train_step(data)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:759 train_step
self.compiled_metrics.update_state(y, y_pred, sample_weight)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/compile_utils.py:409 update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/utils/metrics_utils.py:90 decorated
update_op = update_state_fn(*args, **kwargs)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/metrics.py:176 update_state_fn
return ag_update_state(*args, **kwargs)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/metrics.py:1410 update_state **
sample_weight=sample_weight)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/utils/metrics_utils.py:353 update_confusion_matrix_variables
y_pred.shape.assert_is_compatible_with(y_true.shape)
/Users/poudel/opt/miniconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/tensor_shape.py:1134 assert_is_compatible_with
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (None, 2) and (None, 1) are incompatible
Upvotes: 0
Views: 358
Reputation: 2782
Change the final layer output 2 to 1.
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers.core import Dense
SEED = 100
np.random.seed(100)
X = np.random.random((20, 3))
y = np.random.randint(0,2,size=20)
print(X.shape, y.shape) # (20, 3) (20,)
n_inputs = X.shape[1]
model = Sequential([
Dense(n_inputs, input_shape=(n_inputs, ), activation='relu'),
Dense(32, activation='relu'),
Dense(1, activation='relu')
])
METRIC = 'Recall' # Recall fails
# METRIC = 'accuracy' # accuracy works
model.compile('adam',loss='binary_crossentropy',metrics=[METRIC])
model.fit(X, y,validation_split=0.2,epochs=1)
Upvotes: 1