Reputation: 174
I try to parallelize a scraper. Unfortunately, when I execute this code it runs unusually long. Until I stop. The output is not generated either. Is there something I missed here? Is the problem that I use os.system?
First I define the function, then I load the data pool and then I enter it into the multiprocess.
All in all is what I want do like this:
def cube(x):
return x**3
pool = mp.Pool(processes=2)
results = pool.map(cube, range(1,7))
print(results)
But this small calculation is running now for more than 5 min. So I think there is no error in the code itself. Rather how I understand multiprocessing
from multiprocessing import Pool
import os
import json
import datetime
from dateutil.relativedelta import relativedelta
import re
os.chdir(r'C:\Users\final_tweets_de')
p = Pool(5)
import time
def get_id(data_tweets):
for i in range(len(data_tweets)):
account = data_tweets[i]['user_screen_name']
created = datetime.datetime.strptime(data_tweets[i]['date'], '%Y-%m-%d').date()
until = created + relativedelta(days=10)
id = data_tweets[i]['id']
filename = re.search(r'(.*).json',file).group(1) + '_' + 'tweet_id_' +str(id)+ '_' + 'user_id_' + str(data_tweets[i]['user_id'])
os.system('snscrape twitter-search "(to:'+account+') since:'+created.strftime("%Y-%m-%d")+' until:'+until.strftime("%Y-%m-%d")+' filter:replies" >C:\\Users\\test_'+filename)
directory =r'C:\Users\final_tweets_de'
path= r'C:\Users\final_tweets_de'
for file in os.listdir(directory):
fh = open(os.path.join(path, file),'r')
print(file)
with open(file, 'r', encoding='utf-8') as json_file:
data_tweets = json.load(json_file)
data_tweets = data_tweets[0:5]
start = time.time()
print("start")
p.map(get_id, data_tweets)
p.terminate()
p.join()
end = time.time()
print(end - start)
The reason why the code did not run is firstly the problem addressed by @Booboo. The other one is that the script has to be started via cmd when using windows, in case of muliprocessing.
Like here: Python multiprocessing example not working
Now I the key error 0. If I run the code.
import multiprocessing as mp
import os
import json
import datetime
from dateutil.relativedelta import relativedelta
import re
os.chdir(r'C:\Users\Paul\Documents\Uni\Masterarbeit\Datengewinnung\final_tweets_de')
import time
def get_id(data_tweets):
for i in range(len(data_tweets)):
print(i)
account = data_tweets[i]['user_screen_name']
created = datetime.datetime.strptime(data_tweets[i]['date'], '%Y-%m-%d').date()
until = created + relativedelta(days=10)
id = data_tweets[i]['id']
filename = re.search(r'(.*).json',file).group(1) + '_' + 'tweet_id_' +str(id)+ '_' + 'user_id_' + str(data_tweets[i]['user_id'])
try:
os.system('snscrape twitter-search "(to:'+account+') since:'+created.strftime("%Y-%m-%d")+' until:'+until.strftime("%Y-%m-%d")+' filter:replies" >C:\\Users\\Paul\\Documents\\Uni\\Masterarbeit\\Datengewinnung\\Tweets_antworten\\Antworten\\test_'+filename)
except:
continue
directory =r'C:\Users\Paul\Documents\Uni\Masterarbeit\Datengewinnung\final_tweets_de'
path= r'C:\Users\Paul\Documents\Uni\Masterarbeit\Datengewinnung\final_tweets_de'
for file in os.listdir(directory):
fh = open(os.path.join(path, file),'r')
print(file)
with open(file, 'r', encoding='utf-8') as json_file:
data_tweets = json.load(json_file)
data_tweets = data_tweets[0:2]
start = time.time()
print("start")
if __name__ == '__main__':
pool = mp.Pool(processes=2)
pool.map(get_id, data_tweets)
end = time.time()
print(end - start)
del(data_tweets)
Output:
(NLP 2) C:\Users\Paul\Documents\Uni\Masterarbeit\Datengewinnung\Tweets_antworten>python scrape_id_antworten_parallel.py
corona.json
start
corona.json
corona.json
start
0.0009980201721191406
coronavirus.json
start
0.0
coronavirus.json
start
0.0
covid.json
start
0.0
SARS_CoV.json
start
0.0
0
0
multiprocessing.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "C:\Users\Paul\Anaconda3\envs\NLP 2\lib\multiprocessing\pool.py", line 121, in worker
result = (True, func(*args, **kwds))
File "C:\Users\Paul\Anaconda3\envs\NLP 2\lib\multiprocessing\pool.py", line 44, in mapstar
return list(map(*args))
File "C:\Users\Paul\Documents\Uni\Masterarbeit\Datengewinnung\Tweets_antworten\scrape_id_antworten_parallel.py", line 25, in get_id
account = data_tweets[i]['user_screen_name']
KeyError: 0
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "scrape_id_antworten_parallel.py", line 60, in <module>
pool.map(get_id, data_tweets)
File "C:\Users\Paul\Anaconda3\envs\NLP 2\lib\multiprocessing\pool.py", line 268, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
File "C:\Users\Paul\Anaconda3\envs\NLP 2\lib\multiprocessing\pool.py", line 657, in get
raise self._value
KeyError: 0
Upvotes: 0
Views: 344
Reputation: 3354
Let me share a working example on retrieving futurists tweets. Note that we want multithreading rather than multiprocessing to paralellize I/O operations.
# install social media scrapper: !pip3 install snscrape
import snscrape.modules.twitter as sntwitter
import itertools
import multiprocessing as mp
import datetime
import pandas as pd
start_date = datetime.datetime(2023,2,1,tzinfo=datetime.timezone.utc) # from when
attributes = ('date','url','rawContent') # what attributes to keep
def get_tweets(username,n_tweets=None,attributes=attributes):
tweets = sntwitter.TwitterSearchScraper(f'from:{username}').get_items() # invoke the scrapper
tweets = itertools.islice(tweets,n_tweets) # stopped when the count reached
tweets = itertools.takewhile(lambda t:t.date>=start_date, tweets) # stop when date passed
tweets = map(lambda t: (username,)+tuple(getattr(t,a) for a in attributes),tweets) # keep only attributes needed
tweets = list(tweets) # the result has to be pickle'able
return tweets
# prepare a list of accounts to scrape
user_names = ['kevin2kelly','briansolis','PeterDiamandis','Richard_Florida']
# parallelise queries for speed !
with mp.Pool(4) as p:
results = p.map(get_tweets, user_names)
# combine results
results = list(itertools.chain(*results))
Upvotes: 0
Reputation: 44043
I can see from path= r'C:\Users\final_tweets_de'
that your platform is Windows. When you do multiprocessing under Windows your code that creates the sub-processes must absolutely be executed in a block as follows:
import multiprocessing as mp
def cube(x):
return x**3
if __name__ == '__main__':
pool = mp.Pool(processes=2)
results = pool.map(cube, range(1,7))
print(results)
Otherwise you get into a recursive loop where the sub-process will attempt to create a new pool and new sub-processes ad-infinitum. Fix this problem and re-test. The easiest way is to wrap your code in a function (call it main
for example) and then add:
if __name__ == '__main_':
main()
Also, why are you only using 2 processes or 5 in your actual example. By not specifying an argument to the Pool
constructor, you will create a pool size equal to the number of processors actually available on your computer. Not a bad default that.
Upvotes: 1