Reputation: 175
I am implementing an application in opengl es2.0. I need to use pushmatrix() and popmatrix(). We all know that this function is no more available in opengl es 2.0. I have tried to follow and implement the method given here. However I ddnt find too much success. Also we need to implement some huge number of header files for the same. Has anybody implemented this as a part of their project? If possible, can someone post some code snippet which will guide me to save and restore states of current matrices?
Upvotes: 0
Views: 1230
Reputation: 162164
Say you have a simple linmath library, like this:
typedef GLfloat vec4[4];
inline void vec4_add(vec4 a, vec4 b)
{
int i;
for(i=0; i<4; ++i)
a[i] += b[i];
}
inline void vec4_sub(vec4 a, vec4 b)
{
int i;
for(i=0; i<4; ++i)
a[i] -= b[i];
}
inline void vec4_scale(vec4 v, GLfloat s)
{
int i;
for(i=0; i<4; ++i)
v[i] *= s;
}
inline GLfloat vec4_inner_product(vec4 a, vec4 b)
{
GLfloat p = 0.;
int i;
for(i=0; i<4; ++i)
p += b[i]*a[i];
return p;
}
inline GLfloat vec4_length(vec4 v)
{
return sqrtf(vec4_inner_product(v,v));
}
inline void vec4_normalize(vec4 v)
{
GLfloat k = 1.0 / vec4_length(v);
vec4_scale(v, k);
}
inline void vec4_cross(vec4 a, vec4 b)
{
vec4 c;
c[0] = a[1]*b[2] - a[2]*b[1];
c[1] = a[2]*b[0] - a[0]*b[2];
c[2] = a[0]*b[1] - a[1]*b[0];
c[3] = 0.;
memcpy(a, c, sizeof(a));
}
typedef vec4 mat4x4[4];
inline void mat4x4_identity(mat4x4 M)
{
int i, j;
M[0][0] = 1; M[1][0] = 0; M[2][0] = 0; M[3][0] = 0;
M[0][1] = 0; M[1][1] = 1; M[2][1] = 0; M[3][1] = 0;
M[0][2] = 0; M[1][2] = 0; M[2][2] = 1; M[3][2] = 0;
M[0][3] = 0; M[1][3] = 0; M[2][3] = 0; M[3][3] = 1;
/*for(j=0; j<4; ++j)
for(i=0; i<4; ++i) {
M[i][j] = i==j ? 1 : 0;
}*/
}
inline void mat4x4_cpy(mat4x4 M, mat4x4 N)
{
int i, j;
for(j=0; j<4; ++j) {
for(i=0; i<4; ++i) {
M[i][j] = N[i][j];
}
}
}
inline void mat4x4_mul(mat4x4 M, mat4x4 b)
{
mat4x4 a;
int i, j, k;
memcpy(a, M, sizeof(a));
for(j=0; j<4; ++j) {
for(i=0; i<4; ++i) {
M[i][j] = 0;
for(k=0; k<4; ++k) {
M[i][j] += a[i][k]*b[k][j];
}
}
}
}
inline void mat4x4_trans(mat4x4 M, GLfloat x, GLfloat y, GLfloat z)
{
mat4x4 T; mat4x4_identity(T);
T[3][0] = x;
T[3][1] = y;
T[3][2] = z;
mat4x4_mul(M, T);
}
inline void mat4x4_rot_X(mat4x4 M, GLfloat angle)
{
GLfloat s = sinf(angle);
GLfloat c = cosf(angle);
mat4x4 R = {
{1, 0, 0, 0},
{0, c, s, 0},
{0,-s, c, 0},
{0, 0, 0, 1}
};
mat4x4_mul(M, R);
}
inline void mat4x4_rot_Y(mat4x4 M, GLfloat angle)
{
GLfloat s = sinf(angle);
GLfloat c = cosf(angle);
mat4x4 R = {
{c, 0, s, 0},
{0, 1, 0, 0},
{-s, 0, c, 0},
{0, 0, 0, 1}
};
mat4x4_mul(M, R);
}
inline void mat4x4_rot_Z(mat4x4 M, GLfloat angle)
{
GLfloat s = sinf(angle);
GLfloat c = cosf(angle);
mat4x4 R = {
{c, s, 0, 0},
{-s, c, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1}
};
mat4x4_mul(M, R);
}
inline void mat4x4_row(vec4 r, mat4x4 M, int i)
{
int k;
for(k=0; k<4; ++k)
r[k] = M[k][i];
}
inline void mat4x4_col(vec4 r, mat4x4 M, int i)
{
int k;
for(k=0; k<4; ++k)
r[k] = M[i][k];
}
inline void mat4x4_cpy_T(mat4x4 M, mat4x4 N)
{
int i, j;
for(j=0; j<4; ++j) {
for(i=0; i<4; ++i) {
M[i][j] = N[j][i];
}
}
}
Instead of pushing a matrix, you simply create a copy and continue work on and use that one. Poping then turns into deallocating the copy and switch back to the matrix you made the copy of.
Upvotes: 3