Reputation: 1129
I'm coding a sequence to sequence model with Keras and I'm getting this error:
ValueError: Input 0 of layer lstm_59 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 20]
This is my data:
print(database['sentence1'][0], database['sentence2'][0])
>>> 'It does not matter how you win it , just as long as you do .',
>>> 'It does not matter how you win , only as long as you do it .'
I create an ordinal encoding for my data (each word is a category), so I create a dictionary for the input and target sentences, this are some variables shapes:
number of samples = 2500
unique_input_words = 12738
unique_output_words = 12230
input_length = 20
output_length = 20
encoding_input.shape = (2500, 20)
decoding_input.shape = (2500, 20)
decoding_output.shape = (2500, 20)
Basically the encoding/decoding arrays are list of 2500 samples, each sample has 20 elements of length, (decoded will return a sentence):
print(encoding_input[0])
[12049 5684 3021 11494 8362 8598 8968 8371 3622 5583 8362 840 4061 8917 11710 4860 4491 4860 6411 4166]
This is my RNN model using LSTM layers (using the functional Keras API):
def create_model(
input_length=20,
output_length=20):
encoder_input = tf.keras.Input(shape=(None, input_length,))
decoder_input = tf.keras.Input(shape=(None, output_length,))
encoder, state_h, state_c = tf.keras.layers.LSTM(64, return_state=True, return_sequences=False)(encoder_input)
decoder = tf.keras.layers.LSTM(64, return_sequences=True)(decoder_input, initial_state=[state_h, state_c])
decoder = tf.keras.layers.Dense(20, activation="softmax")(decoder)
model = tf.keras.Model(inputs=[encoder_input, decoder_input], outputs=[decoder])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
model = create_model()
If I fit the model with my data:
model.fit([encoder_input, decoder_input],
decoder_output,
batch_size=64,
epochs=5)
First I get this warning:
WARNING:tensorflow:Model was constructed with shape (None, None, 20) for input Tensor("input_67:0", shape=(None, None, 20), dtype=float32), but it was called on an input with incompatible shape (None, 20).
WARNING:tensorflow:Model was constructed with shape (None, None, 20) for input Tensor("input_68:0", shape=(None, None, 20), dtype=float32), but it was called on an input with incompatible shape (None, 20).
And then the whole traceback:
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step **
outputs = model.train_step(data)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step
y_pred = self(x, training=True)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:386 call
inputs, training=training, mask=mask)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/recurrent.py:663 __call__
return super(RNN, self).__call__(inputs, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
self.name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:180 assert_input_compatibility
str(x.shape.as_list()))
ValueError: Input 0 of layer lstm_59 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 20]
Model.summary()
:
Model: "functional_45"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_67 (InputLayer) [(None, None, 20)] 0
__________________________________________________________________________________________________
input_68 (InputLayer) [(None, None, 20)] 0
__________________________________________________________________________________________________
lstm_59 (LSTM) [(None, 64), (None, 21760 input_67[0][0]
__________________________________________________________________________________________________
lstm_60 (LSTM) (None, None, 64) 21760 input_68[0][0]
lstm_59[0][1]
lstm_59[0][2]
__________________________________________________________________________________________________
dense_22 (Dense) (None, None, 20) 1300 lstm_60[0][0]
==================================================================================================
Total params: 44,820
Trainable params: 44,820
Non-trainable params: 0
__________________________________________________________________________________________________
I know probably the error happens because of the dimension of my output but I actually have tried a lot of solutions and none of them had worked.
Upvotes: 1
Views: 502
Reputation: 593
The expected dimension is 3 while your input dimension is 2, as per the error.
LSTM requires the input to be in the following shape.
inputs
: A 3D tensor with shape [batch, timesteps, feature]
.The feature
dimension usually contains the embedding vector but your code doesn't have any embeddings so your third dimension should be 1.
You can use the tf.expand_dims method to add a dimension at the end of your input: (2500,20,1)
Upvotes: 1