Reputation: 631
I'm trying to build a regression model where the underlying feature matrix is pretty big (418K rows on 73K columns) and is very sparse (58M non zero values which is around 0.2% of the entire matrix).
I have the matrix coordinate representation as a DataFrame where the first column is row coordinate i
, the second is column coordinate j
and the third is the value in the {i,j}
th position.
E.g. the following matrix:
+-+-+-+
|0|1|0|
|2|0|0|
|0|0|3|
+-+-+-+
Is represented by
+-+-+-----+
|i|j|value|
+-+-+-----+
|0|1| 1 |
|1|0| 2 |
|2|2| 3 |
+-+-+-----+
I have a separate DataFrame containing the label for every row i
.
If possible I'd prefer the solution to use the newer ml
library rather than the older mllib
Upvotes: 2
Views: 339
Reputation: 631
Below I give a small code example of how to implement distributed sparse linear regression in spark ml
. I've used it with the matrix in question on a large cluster (Databricks Runtime version 6.5 ML - includes Apache Spark 2.4.5, Scala 2.11) so it scales well and took just a few minutes to execute.
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.Dataset
import org.apache.spark.ml.linalg.SparseVector
import org.apache.spark.ml.feature.LabeledPoint
import spark.implicits._
import org.apache.spark.ml.regression.LinearRegression
// Construct Matrix coordinate representation DataFrame
val df = Seq(
(0, 1, 14.0),
(0, 0, 13.0),
(1, 1, 11.0)
).toDF("i", "j", "value")
df.show()
+---+---+-----+
| i| j|value|
+---+---+-----+
| 0| 1| 14.0|
| 0| 0| 13.0|
| 1| 1| 11.0|
+---+---+-----+
// Construct label DataFrame
val df_label = Seq(
(0, 41.1),
(1, 21.9) // beta_1 = 1, beta_2 = 2
).toDF("i", "label")
df_label.show()
+---+-----+
| i|label|
+---+-----+
| 0| 41.1|
| 1| 21.9|
+---+-----+
// Use a UDF to sort arrays below
val sortUdf: UserDefinedFunction = udf((rows: Seq[Row]) => {
rows.map { case Row(j: Int, value: Double) => (j, value) }
.sortBy { case (j, value) => j }
})
// collect j and value columns to lists, make sure they are sorted by j
// then join with labels
val df_collected_with_labels = df
.groupBy("i")
.agg(collect_list(struct("j", "value")) as "j_value")
.select($"i", sortUdf(col("j_value")).alias("j_value_list"))
.withColumn("j_list", $"j_value_list".getField("_1"))
.withColumn("value_list", $"j_value_list".getField("_2"))
.drop("j_value_list")
.join(df_label, "i")
df_collected_with_labels.show()
+---+------+------------+-----+
| i|j_list| value_list|label|
+---+------+------------+-----+
| 1| [1]| [11.0]| 21.9|
| 0|[0, 1]|[13.0, 14.0]| 41.1|
+---+------+------------+-----+
val unique_j = df.dropDuplicates("j").count().toInt
val sparse_df = df_collected_with_labels
.map(r => LabeledPoint(r.getDouble(3),
new SparseVector(size = unique_j,
indices = r.getAs[Seq[Int]]("j_list").toArray,
values = r.getAs[Seq[Double]]("value_list").toArray)))
sparse_df.show()
+-----+--------------------+
|label| features|
+-----+--------------------+
| 21.9| (2,[1],[11.0])|
| 41.1|(2,[0,1],[13.0,14...|
+-----+--------------------+
// Fit sparse regression!
val lr = new LinearRegression()
.setFitIntercept(false)
val lrModel = lr.fit(sparse_df)
lrModel.coefficients
org.apache.spark.ml.linalg.Vector = [1.0174825174825193,1.9909090909090894]
lrModel.predict(new SparseVector(size = unique_j, indices = Array(0), values = Array(4.0)))
Double = 4.069930069930077
Upvotes: 1