Reputation: 877
I have started learning spark and while trying to run this example:
package examples
import org.apache.spark.sql.SparkSession
object Test extends App {
val spark: SparkSession = SparkSession.builder()
.master("local[2]")
.appName("SparkByExample")
.getOrCreate()
println("First SparkContext:")
println("APP Name :"+spark.sparkContext.appName)
println("Deploy Mode :"+spark.sparkContext.deployMode)
println("Master :"+spark.sparkContext.master)
println("Default Min parallelism" + spark.sparkContext.defaultMinPartitions)
println("Default parallelism" + spark.sparkContext.defaultParallelism)
val sparkSession2: SparkSession = SparkSession.builder()
.master("local[1]")
.appName("SparkByExample-test")
.getOrCreate()
println("Second SparkContext:")
println("APP Name :"+sparkSession2.sparkContext.appName)
println("Deploy Mode :"+sparkSession2.sparkContext.deployMode)
println("Master :"+sparkSession2.sparkContext.master)
println("Default Min parallelism" + sparkSession2.sparkContext.defaultMinPartitions)
println("Default parallelism" + sparkSession2.sparkContext.defaultParallelism)
}
Here i have created two spark Session the first one with two cores and second one with one core, but when i run it, i get two parallelism for both sessions, I do not understand why?
First SparkContext:
APP Name :SparkByExample
Deploy Mode :client
Master :local[2]
Default Min parallelism2
Default parallelism2
Second SparkContext:
APP Name :SparkByExample
Deploy Mode :client
Master :local[2]
Default Min parallelism2
Default parallelism2
Upvotes: 0
Views: 315
Reputation: 11449
println("Default parallelism" + sparkSession2.sparkContext.defaultParallelism)
"sparkContext.defaultParallelism" is returns default level of parallelism defined on
SparkContext ,its default value calculated based on no of cores available on your application.
Upvotes: 1