Reputation: 1376
I have data like:
from pyspark.sql import SparkSession, Row
import pyspark.sql.functions as F
dd = spark.createDataFrame([
('0', [Row(f1=0),Row(f1=1),Row(f1=None)]),
('1', [Row(f1=None), Row(f1=2)]),
('2', [])
], ['id', 'arr'])
And want a new column containing the first non-zero element in the 'arr' array, or null. In this case:
id | target_elt
0 | 1
1 | 2
2 | Null
Note that the array elements are of type Struct with an IntegerType field "f1"
My attempt:
positiveNonNull = F.udf(
lambda array: [
x.f1 for x in array
if (x.f1 is not None) & (x.f1 > 0)
], ArrayType(LongType())
)
dd.withColumn('newcol', positiveNonNull(F.col('arr')).getItem(0)).show()
I get TypeError: '>=' not supported between instances of 'NoneType' and 'int'
Upvotes: 0
Views: 895
Reputation: 1376
Figured it out by wrapping the lambda code in a helper:
def val_if_pos(f1_value):
if f1_value > 0:
return f1_value
posNonNull = F.udf(lambda array: [val_if_pos(x.f1) for x in array if x.f1 is not None], ArrayType(LongType()))
(dd.withColumn('_temp', posNonNull(F.col('arr'))
).withColumn('firstPosNonNull', F.expr("FILTER(_temp, x -> x is not null)").getItem(0)
).drop('_temp')
).show()
Upvotes: 1