Reputation: 45
Im looking to split the column Date range into two columns, starting date and ending date. However it split doesn't seem to work because it does not recognise the '-'. Any advice?
I tried using
''' ebola1 = pd.DataFrame(ebola['Date range'].str.split('-',1).to_list(),columns = ['start date','end date']) '''
However, it returns the following:
So (1) it doesn't recognize the '-', (2)how do I distinguish between 'Jun-Nov 1976' and 'Oct 2001-Mar 2002', (3) how to I include the new columns in the existing table?
Thanks for the help!
Upvotes: 1
Views: 108
Reputation: 862511
There is used –
instead -
, so use Series.str.split
with expand=True
for DataFrame
:
data = ['Jun–Nov 1976', 'Sep–Oct 1976', 'Jun 1977', 'Jul–Oct 1979', 'Nov 1994', 'Nov 1994–Feb 1995', 'Jan–Jul 1995', 'Jan–Mar 1996', 'Jul 1996–Jan 1997', 'Oct 2000–Feb 2001', 'Oct 2001–Mar 2002', 'Oct 2001–Mar 2002', 'Oct 2001–Mar 2002', 'Oct 2001–Mar 2002', 'Oct 2001–Mar 2002', 'Dec 2002–Apr 2003', 'Dec 2002–Apr 2003', 'Dec 2002–Apr 2003', 'Oct–Dec 2003', 'Apr–Jun 2004']
ebola = pd.DataFrame(data, columns=['Date range'])
ebola1 = ebola['Date range'].str.split('–', 1, expand=True)
ebola1.columns = ['start date','end date']
And then numpy.where
for add years from end date
by Series.str.extract
but only if not exist in start date
column tested by Series.str.contains
:
mask = ebola1['start date'].str.contains('\d')
years = ebola1['end date'].str.extract('(\d+)', expand=False)
ebola1['start date'] = np.where(mask,
ebola1['start date'],
ebola1['start date'] + ' ' + years)
print (ebola1)
start date end date
0 Jun 1976 Nov 1976
1 Sep 1976 Oct 1976
2 Jun 1977 None
3 Jul 1979 Oct 1979
4 Nov 1994 None
5 Nov 1994 Feb 1995
6 Jan 1995 Jul 1995
7 Jan 1996 Mar 1996
8 Jul 1996 Jan 1997
9 Oct 2000 Feb 2001
10 Oct 2001 Mar 2002
11 Oct 2001 Mar 2002
12 Oct 2001 Mar 2002
13 Oct 2001 Mar 2002
14 Oct 2001 Mar 2002
15 Dec 2002 Apr 2003
16 Dec 2002 Apr 2003
17 Dec 2002 Apr 2003
18 Oct 2003 Dec 2003
19 Apr 2004 Jun 2004
Upvotes: 1