Reputation: 329
I have given the following df
df = pd.DataFrame(data = {'day': [1, 1, 1, 2, 2, 3], 'pos': 2*[1, 14, 18], 'value': 2*[1, 2, 3]}
df
day pos value
0 1 1 1
1 1 14 2
2 1 18 3
3 2 1 1
4 2 14 2
5 3 18 3
and i want to fill in rows such that every day has every possible value of column 'pos'
desired result:
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 2 18 NaN
6 3 1 NaN
7 3 14 NaN
8 3 18 3.0
Proposition:
df.set_index('pos').reindex(pd.Index(3*[1,14,18])).reset_index()
yields:
ValueError: cannot reindex from a duplicate axis
Upvotes: 6
Views: 336
Reputation: 28644
You could use the complete function from pyjanitor to expose the missing values :
# pip install pyjanitor
import pandas as pd
import janitor as jn
df.complete('day', 'pos')
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 2 18 NaN
6 3 1 NaN
7 3 14 NaN
8 3 18 3.0
Upvotes: 0
Reputation: 59274
I'd avoid the manual product
of all possible values.
Instead, one can get the unique values and just reindex
per day:
u = df.pos.unique()
df.groupby('day').apply(lambda s: s.set_index('pos').reindex(u))['value']\
.reset_index()
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 2 18 NaN
6 3 1 NaN
7 3 14 NaN
8 3 18 3.0
Upvotes: 2
Reputation: 22493
You can reindex
:
s = pd.MultiIndex.from_product([df["day"].unique(),df["pos"].unique()], names=["day","pos"])
print (df.set_index(["day","pos"]).reindex(s).reset_index())
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 2 18 NaN
6 3 1 NaN
7 3 14 NaN
8 3 18 3.0
Upvotes: 2
Reputation: 150735
Let's try pivot
then stack
:
df.pivot('day','pos','value').stack(dropna=False).reset_index(name='value')
Output:
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 2 18 NaN
6 3 1 NaN
7 3 14 NaN
8 3 18 3.0
Option 2: merge with MultiIndex:
df.merge(pd.DataFrame(index=pd.MultiIndex.from_product([df['day'].unique(), df['pos'].unique()])),
left_on=['day','pos'], right_index=True, how='outer')
Output:
day pos value
0 1 1 1.0
1 1 14 2.0
2 1 18 3.0
3 2 1 1.0
4 2 14 2.0
5 3 18 3.0
5 2 18 NaN
5 3 1 NaN
5 3 14 NaN
Upvotes: 4