Reputation: 233
I have one dataframe which is below-
0
____________________________________
0 Country| India
60 Delhi
62 Mumbai
68 Chennai
75 Country| Italy
78 Rome
80 Venice
85 Milan
88 Country| Australia
100 Sydney
103 Melbourne
107 Perth
I want to Split the data in 2 columns so that in one column there will be country and on other there will be city. I have no idea where to start with. I want like below-
0 1
____________________________________
0 Country| India Delhi
1 Country| India Mumbai
2 Country| India Chennai
3 Country| Italy Rome
4 Country| Italy Venice
5 Country| Italy Milan
6 Country| Australia Sydney
7 Country| Australia Melbourne
8 Country| Australia Perth
Any Idea how to do this?
Upvotes: 3
Views: 102
Reputation: 28644
Look for rows where |
is present and pull into another column, and fill down on the newly created column :
(
df.rename(columns={"0": "city"})
# this looks for rows that contain '|' and puts them into a
# new column called Country. rows that do not match will be
# null in the new column.
.assign(Country=lambda x: x.loc[x.city.str.contains("\|"), "city"])
# fill down on the Country column, this also has the benefit
# of linking the Country with the City,
.ffill()
# here we get rid of duplicate Country entries in city and Country
# this ensures that only Country entries are in the Country column
# and cities are in the City column
.query("city != Country")
# here we reverse the column positions to match your expected output
.iloc[:, ::-1]
)
Country city
60 Country| India Delhi
62 Country| India Mumbai
68 Country| India Chennai
78 Country| Italy Rome
80 Country| Italy Venice
85 Country| Italy Milan
100 Country| Australia Sydney
103 Country| Australia Melbourne
107 Country| Australia Perth
Upvotes: 3
Reputation: 862641
Use DataFrame.insert
with Series.where
and Series.str.startswith
for replace not matched values to missing values with ffill
for forward filling missing values and then remove rows with same values in both by Series.ne
for not equal in boolean indexing
:
df.insert(0, 'country', df[0].where(df[0].str.startswith('Country')).ffill())
df = df[df['country'].ne(df[0])].reset_index(drop=True).rename(columns={0:'city'})
print (df)
country city
0 Country|India Delhi
1 Country|India Mumbai
2 Country|India Chennai
3 Country|Italy Rome
4 Country|Italy Venice
5 Country|Italy Milan
6 Country|Australia Sydney
7 Country|Australia Melbourne
8 Country|Australia Perth
Upvotes: 2