Reputation: 67
I have the following data in spark 2.4.5:
data = [
('1234', '203957', '2010', 'London', 'CHEM'),
('1234', '203957', '2010', 'London', 'BIOL'),
('1234', '288400', '2012', 'Berlin', 'MATH'),
('1234', '288400', '2012', 'Berlin', 'CHEM'),
]
d = spark.createDataFrame(data, ['auid', 'eid', 'year', 'city', 'subject'])
d.show()
+----+------+----+------+-------+
|auid| eid|year| city|subject|
+----+------+----+------+-------+
|1234|203957|2010|London| CHEM|
|1234|203957|2010|London| BIOL|
|1234|288400|2012|Berlin| MATH|
|1234|288400|2012|Berlin| CHEM|
+----+------+----+------+-------+
from which I need to get df grouped by auid
, with a chronological order of cities, i.e. London, Berlin
and [[Berlin, 2010], [London, 2012]]
in another column, plus I need sorted by descending frequency column with subjects: [CHEM,2], [BIOL, 1], [MATH, 1]
. Or it could be just like [CHEM, BIOL, MATH]
.
I tried this:
d.groupBy('auid').agg(func.collect_set(func.struct('city', 'year')).alias('city_set')).show(10, False)
which leads to this:
+----+--------------------------------+
|auid|city_set |
+----+--------------------------------+
|1234|[[Berlin, 2012], [London, 2010]]|
+----+--------------------------------+
Here I am stuck and need help. (would appreciate a hint on to sort values in city_set
)
Upvotes: 2
Views: 409
Reputation: 13998
You can do aggregate of collect_list on struct('year', 'city')
, sort the array and then use transform
function to adjust the order of the fields. Similar to subjects, create an array of structs with two fields: cnt
and subject
, sort/desc the array of structs and then retrieve only subject
field:
df_new = d.groupBy('auid').agg(
func.sort_array(func.collect_set(func.struct('year', 'city'))).alias('city_set'),
func.collect_list('subject').alias('subjects')
).withColumn('city_set', func.expr("transform(city_set, x -> (x.city as city, x.year as year))")) \
.withColumn('subjects', func.expr("""
sort_array(
transform(array_distinct(subjects), x -> (size(filter(subjects, y -> y=x)) as cnt, x as subject)),
False
).subject
"""))
df_new.show(truncate=False)
+----+--------------------------------+------------------+
|auid|city_set |subjects |
+----+--------------------------------+------------------+
|1234|[[London, 2010], [Berlin, 2012]]|[CHEM, MATH, BIOL]|
+----+--------------------------------+------------------+
Edit: there are several ways to remove the duplicate city entries in city_set
array:
use Window function to adjust year
to min(year) for each city, and then repeat the above procedure.
d = d.withColumn('year', func.min('year').over(Window.partitionBy('auid','city')))
use aggregate function to remove duplicates from city_set
array:
df_new = d.groupBy('auid').agg(
func.sort_array(func.collect_set(func.struct('year', 'city'))).alias('city_set')
).withColumn("city_set", func.expr("""
aggregate(
/* expr: take slice of city_set array from the 2nd element to the last */
slice(city_set,2,size(city_set)-1),
/* start: initialize `acc` as an array with a single entry city_set[0].city */
array(city_set[0].city),
/* merge: iterate through `expr`, if x.city exists in `acc`, keep as-is
* , otherwise add an entry to `acc` using concat function */
(acc,x) -> IF(array_contains(acc,x.city), acc, concat(acc, array(x.city)))
)
"""))
Note: it would be much easier with Spark 3.0+ though:
df_new = d.groupBy('auid').agg(func.expr("array_sort(collect_set((city,year)), (l,r) -> int(l.year-r.year)) as city_set"))
Upvotes: 2