Reputation: 447
I have a shapefile about NYC Yellow cab service zones: taxi_zones.shp. It can be download here: https://s3.amazonaws.com/nyc-tlc/misc/taxi_zones.zip
I want to check whether certain locations fall into any of the zones. Here is the R code I use:
library(sf)
tt <- read_sf('taxi_zones.shp')
pnts <- data.frame(
"x" = c(-73.97817,-74.00668,0,500),
"y" = c(40.75798, 40.73178,0,400))
pnts_sf <- do.call("st_sfc",c(lapply(1:nrow(pnts),
function(i) {st_point(as.numeric(pnts[i, ]))}), list("crs" = 4326)))
pnts_trans <- st_transform(pnts_sf, 2163)
tt_trans <- st_transform(tt, 2163)
zones <- apply(st_intersects(tt_trans, pnts_trans, sparse = FALSE), 2,
function(col) {
tt_trans[which(col), ]$LocationID
})
The first two points are within the zones defined by the shapefile. However, the third point is not. And the fourth point has incorrect coordinates. How should I modify the code so that for points outside the zones and points with incorrect coordinates, it returns 'NA'?
Upvotes: 1
Views: 3355
Reputation: 8749
I suggest you consider joining your spatial objects via sf::st_join()
, as shown bellow; what it does is that it combines the attributes of your polygon objects and points objects.
The default behaviour is "left" join = points lacking polygons will get NA
. It can be tweaked by setting left = FALSE
in join parameters, resulting in "inner" join behaviour = points not contained in polygons will be omitted from result.
library(sf)
tt <- read_sf('taxi_zones.shp')
pnts <- data.frame(
"x" = c(-73.97817,-74.00668,0,500),
"y" = c(40.75798, 40.73178,0,400))
pnts_sf <- sf::st_as_sf(pnts, coords = c("x", "y"), crs = 4326)
pnts_trans <- st_transform(pnts_sf, 2163)
tt_trans <- st_transform(tt, 2163)
res <- sf::st_join(pnts_trans, tt_trans)
print(res)
Simple feature collection with 4 features and 6 fields (with 1 geometry empty)
geometry type: POINT
dimension: XY
bbox: xmin: 2152087 ymin: -130624.1 xmax: 9480615 ymax: 1178046
projected CRS: NAD27 / US National Atlas Equal Area
OBJECTID Shape_Leng Shape_Area zone LocationID borough geometry
1 161 0.03580391 7.191307e-05 Midtown Center 161 Manhattan POINT (2153474 -127064.5)
2 158 0.05480999 1.855683e-04 Meatpacking/West Village West 158 Manhattan POINT (2152087 -130624.1)
3 NA NA NA <NA> NA <NA> POINT (9480615 1178046)
4 NA NA NA <NA> NA <NA> POINT EMPTY
Upvotes: 2
Reputation: 480
I have my own approach. Would that fulfill your requirements? I can't tell you what specifically is wrong with your code, but this one is also a bit cleaner:
library(sf)
tt <- read_sf('./Downloads/taxi_zones/taxi_zones.shp')
pnts <- data.frame(
"x" = c(-73.97817, -74.00668, 0, 500),
"y" = c(40.75798, 40.73178, 0, 400)
)
pnts_sf <- st_as_sf(pnts, coords = c('x', 'y'), crs = st_crs(4326))
pnts_trans <- st_transform(pnts_sf, 2163)
tt_trans <- st_transform(tt, 2163)
pnts_trans <- pnts_sf %>% mutate(
intersection = as.integer(st_intersects( pnts_trans,tt_trans)))
The result would be
geometry intersection
1 POINT (-73.97817 40.75798) 161
2 POINT (-74.00668 40.73178) 158
3 POINT (0 0) NA
4 POINT (500 400) NA
Upvotes: 4