Reputation: 457
Quite regularly I find myself in the need of plotting (a lot of) maps of a variety of regions and region sizes. I would like these maps to have ticklabels indicating longitude and latitude (similar to this example: https://scitools.org.uk/cartopy/docs/v0.15/examples/tick_labels.html).
However, the solution suggested there does not work for me since it requires a priori knowledge about the region extend. I've written several way too complicated functions over the years in order to try and make this work in a flexible way. So what I'm wondering at this point: is there a simple solution to put latitude & longitude ticklabels to a map of variable extend?
This here comes somewhat close but is still quite unreliable:
import numpy as np
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import matplotlib.pyplot as plt
def auto_labeling(lon=np.linspace(-10, 40, 10), lat=np.linspace(30, 70, 10), filename='test1.png'):
proj = ccrs.PlateCarree(central_longitude=0)
data = np.ones((len(lon), len(lat)))
ax = plt.subplot(projection=proj)
ax.pcolormesh(lon, lat, data, transform=ccrs.PlateCarree(), alpha=.5)
ax.coastlines()
ax.set_xticks(ax.get_xticks(), crs=ccrs.PlateCarree())
ax.set_yticks(ax.get_yticks(), crs=ccrs.PlateCarree())
lon_formatter = LongitudeFormatter()
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
plt.savefig(filename, dpi=300)
plt.close()
if __name__ == '__main__':
auto_labeling(filename='test3.png') # nice
auto_labeling(np.linspace(-120, 120, 10), filename='test4.png') # not nice but somewhat okay
auto_labeling(np.linspace(-120, 120, 10), np.linspace(-70, 70, 10), filename='test5.png') # nice
# auto_labeling(np.linspace(-180, 180, 10), np.linspace(-90, 90, 10), filename='test6.png') # fails
Upvotes: 1
Views: 475
Reputation: 457
Okay the set_extend
by @r-beginners set me on the right track. I still don't understand everything that is going on but two things seem to be important:
I've also added an offset parameter that deals with the issue that @swatchai raises and extents the range by half a grid cell in each direction by default. More is also possible as I think this looks nice sometimes.
import numpy as np
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import matplotlib.pyplot as plt
def auto_labeling(lon, lat, filename, offset_dx=.5, offset_dy=.5):
assert len(np.unique(lon[1:] - lon[:-1])) == 1
assert len(np.unique(lat[1:] - lat[:-1])) == 1
yy, xx = np.meshgrid(lat, lon)
data = np.ones((len(lon), len(lat)))
proj = ccrs.PlateCarree(central_longitude=0)
ax = plt.subplot(projection=proj)
ax.pcolormesh(xx, yy, data, transform=ccrs.PlateCarree(), alpha=.5)
ax.coastlines()
xticks = ax.get_xticks()
yticks = ax.get_yticks()
xticks = xticks[(xticks>=-180) & (xticks<=180)]
yticks = yticks[(yticks>=-90) & (yticks<=90)]
ax.set_xticks(xticks, crs=ccrs.PlateCarree())
ax.set_yticks(yticks, crs=ccrs.PlateCarree())
lon_formatter = LongitudeFormatter()
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
# set the plot extend
dx = (lon[1] - lon[0])*offset_dx
dy = (lat[1] - lat[0])*offset_dy
lon_min = max([-180, min(lon) - dx])
lon_max = min([180, max(lon) + dx])
lat_min = max([-90, min(lat) - dy])
lat_max = min([90, max(lat) + dy])
ax.set_xlim(lon_min, lon_max)
ax.set_ylim(lat_min, lat_max)
plt.savefig(filename, dpi=300)
plt.close()
if __name__ == '__main__':
auto_labeling(np.arange(-10, 40+2.5, 2.5), np.arange(30, 70+2.5, 2.5), 'test1.png', 1, 1)
auto_labeling(np.arange(-120, 120+2.5, 2.5), np.arange(30, 70+2.5, 2.5), 'test2.png')
auto_labeling(np.arange(-120, 120+2.5, 2.5), np.arange(-70, 70+2.5, 2.5), 'test3.png')
auto_labeling(np.arange(-180+1.25, 180, 2.5), np.arange(-90+1.25, 90, 2.5), 'test4.png', 2, 3) # offset is ignored for this case
Upvotes: 0
Reputation: 35115
PlateCaree extends the region with ax.set_extent([min(lon), max(lon), min(lat), max(lat)])
. The ax.pcolormesh()
is commented out because it causes an error. I don't know enough about this point.
import numpy as np
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import matplotlib.pyplot as plt
def auto_labeling(lon=np.arange(-10, 40, 10), lat=np.arange(30, 70, 10), filename='test1.png'):
proj = ccrs.PlateCarree(central_longitude=0)
data = np.ones((len(lon), len(lat)))
plt.figure(figsize=(16,9))
ax = plt.subplot(projection=proj)
ax.set_extent([min(lon), max(lon), min(lat), max(lat)])
# ax.pcolormesh(lon, lat, data, transform=ccrs.PlateCarree(), alpha=.5)
ax.coastlines()
ax.set_xticks(lon, crs=ccrs.PlateCarree())
ax.set_yticks(lat, crs=ccrs.PlateCarree())
lon_formatter = LongitudeFormatter()
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
# plt.savefig(filename, dpi=300)
# plt.close()
plt.show()
if __name__ == '__main__':
auto_labeling(filename='test3.png') # nice
auto_labeling(np.arange(-120, 120, 60), filename='test4.png') # not nice but somewhat okay
auto_labeling(np.arange(-120, 120, 60), np.arange(-70, 70, 30), filename='test5.png') # nice
Upvotes: 1