Reputation: 33
Is there an easier vectorized way to achieve the same result as this?
import numpy as np
tempY = np.zeros((10,10))
y = np.array([0,0,2,3,4,5,5,8,8,2]).reshape(10,1)
for index in range(y.size):
tempY[y[index].squeeze(), index] = 1
print(tempY)
output:
[[1. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
Upvotes: 2
Views: 51
Reputation: 28644
You could pass it as rows, columns to index and replace the values :
tempY[y.ravel(), np.arange(y.size)] = 1
tempY
array([[1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
Upvotes: 1