Reputation: 65
I am using case_when
to summarise a data frame using rowwise
in dplyr
. I have a sample data frame as shown below
structure(list(A = c(NA, 1, 0, 0, 0, 0, 0), B = c(NA, 0, 0, 1,
0, 0, 0), C = c(NA, 1, 0, 0, 0, 0, 0), D = c(NA, 1, 0, 1, 0,
0, 1), E = c(NA, 1, 0, 1, 0, 0, 1)), row.names = c(NA, -7L), class = "data.frame")
The code works when I mention all the names
df %>%
rowwise() %>%
mutate(New = case_when(any(c(A,B,C,D,E) == 1) ~ 1,
all(c(A,B,C,D,E) == 0 ) ~ 0
))
Can I pass the names in a vector, e.g cols <- colnames(df)
, and then that in case_when
Upvotes: 3
Views: 575
Reputation: 389055
To answer your question you can use cur_data()
in dplyr
1.0.0 or c_across()
library(dplyr)
df %>%
rowwise() %>%
mutate(New = case_when(any(cur_data() == 1) ~ 1,
all(cur_data() == 0 ) ~ 0))
# A B C D E New
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 NA NA NA NA NA NA
#2 1 0 1 1 1 1
#3 0 0 0 0 0 0
#4 0 1 0 1 1 1
#5 0 0 0 0 0 0
#6 0 0 0 0 0 0
#7 0 0 0 1 1 1
With c_across()
:
df %>%
rowwise() %>%
mutate(New = case_when(any(c_across()== 1) ~ 1,
all(c_across()== 0 ) ~ 0))
But you can also solve this using rowSums
:
df %>%
mutate(New = case_when(rowSums(. == 1, na.rm = TRUE) > 0 ~ 1,
rowSums(. == 0, na.rm = TRUE) == ncol(.) ~ 0))
Upvotes: 3
Reputation: 1284
If you only have 0's and 1's in your dataset you could use this
df$New <- ifelse(rowSums(df) > 0, 1, 0)
If the rowsum > 0 it means that at least one '1' is present. Output
A B C D E New
1 NA NA NA NA NA NA
2 1 0 1 1 1 1
3 0 0 0 0 0 0
4 0 1 0 1 1 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 1 1 1
Upvotes: 1