Reputation: 387
I copy code from Kaggle and I can not count the numbers of layers in it. I am working on an image classification model. can anyone explain this. I try most solutions and I can not count the convolutional and dense layers.
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
if K.image_data_format() == "channels_first":
inputShape = (depth, height, width)
chanDim = 1
model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(64, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(128, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(15))
model.add(Activation("softmax"))
model.summary()
can any one explain.
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_5 (Conv2D) (None, 256, 256, 32) 896
_________________________________________________________________
activation_6 (Activation) (None, 256, 256, 32) 0
_________________________________________________________________
batch_normalization_6 (Batch (None, 256, 256, 32) 128
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 85, 85, 32) 0
_________________________________________________________________
dropout_4 (Dropout) (None, 85, 85, 32) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 85, 85, 64) 18496
_________________________________________________________________
activation_7 (Activation) (None, 85, 85, 64) 0
_________________________________________________________________
batch_normalization_7 (Batch (None, 85, 85, 64) 256
_________________________________________________________________
conv2d_7 (Conv2D) (None, 85, 85, 64) 36928
_________________________________________________________________
activation_8 (Activation) (None, 85, 85, 64) 0
_________________________________________________________________
batch_normalization_8 (Batch (None, 85, 85, 64) 256
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 42, 42, 64) 0
_________________________________________________________________
dropout_5 (Dropout) (None, 42, 42, 64) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 42, 42, 128) 73856
_________________________________________________________________
activation_9 (Activation) (None, 42, 42, 128) 0
_________________________________________________________________
batch_normalization_9 (Batch (None, 42, 42, 128) 512
_________________________________________________________________
conv2d_9 (Conv2D) (None, 42, 42, 128) 147584
_________________________________________________________________
activation_10 (Activation) (None, 42, 42, 128) 0
_________________________________________________________________
batch_normalization_10 (Batc (None, 42, 42, 128) 512
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 21, 21, 128) 0
_________________________________________________________________
dropout_6 (Dropout) (None, 21, 21, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 56448) 0
_________________________________________________________________
dense_1 (Dense) (None, 1024) 57803776
_________________________________________________________________
activation_11 (Activation) (None, 1024) 0
_________________________________________________________________
batch_normalization_11 (Batc (None, 1024) 4096
_________________________________________________________________
dropout_7 (Dropout) (None, 1024) 0
_________________________________________________________________
dense_2 (Dense) (None, 15) 15375
_________________________________________________________________
activation_12 (Activation) (None, 15) 0
=================================================================
Total params: 58,102,671
Trainable params: 58,099,791
Non-trainable params: 2,880
_________________________________________________________________
I can not count the numbers of convolutional and dense layers.
I try model.layers
as well.
the output of this is 28. how?
How can I get the number of convolutional & dense layers programmatically?
Upvotes: 0
Views: 83
Reputation: 3764
First, the reason why the number of layers is 28 is because Flatten
, BatchNormalization
, Dropout
, Activation
and MaxPool2D
are all counted in model.layers
.
That being said, you can get the count of the layers using isinstance
:
num_conv = 0
num_dense = 0
for layer in model.layers:
if isinstance(layer, Conv2D):
num_conv += 1
elif isinstance(layer, Dense):
num_dense += 1
Upvotes: 1