Reputation: 213
Trying to add Densenet121 functional block to the model. I need Keras model to be written in this format, not using
model=Sequential()
model.add()
method What's wrong the function, build_img_encod
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-62-69dd207148e0> in <module>()
----> 1 x = build_img_encod()
3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
164 spec.min_ndim is not None or
165 spec.max_ndim is not None):
--> 166 if x.shape.ndims is None:
167 raise ValueError('Input ' + str(input_index) + ' of layer ' +
168 layer_name + ' is incompatible with the layer: '
AttributeError: 'Functional' object has no attribute 'shape'
def build_img_encod( ):
base_model = DenseNet121(input_shape=(150,150,3),
include_top=False,
weights='imagenet')
for layer in base_model.layers:
layer.trainable = False
flatten = Flatten(name="flatten")(base_model)
img_dense_encoder = Dense(1024, activation='relu',name="img_dense_encoder", kernel_regularizer=regularizers.l2(0.0001))(flatten)
model = keras.models.Model(inputs=base_model, outputs = img_dense_encoder)
return model
Upvotes: 5
Views: 13173
Reputation: 213
def build_img_encod( ):
dense = DenseNet121(input_shape=(150,150,3),
include_top=False,
weights='imagenet')
for layer in dense.layers:
layer.trainable = False
img_input = Input(shape=(150,150,3))
base_model = dense(img_input)
flatten = Flatten(name="flatten")(base_model)
img_dense_encoder = Dense(1024, activation='relu',name="img_dense_encoder", kernel_regularizer=regularizers.l2(0.0001))(flatten)
model = keras.models.Model(inputs=img_input, outputs = img_dense_encoder)
return model
This worked..
Upvotes: 0
Reputation: 15043
The reason why you get that error is that you need to provide the input_shape
of the base_model
, instead of the base_model
per say.
Replace this line: model = keras.models.Model(inputs=base_model, outputs = img_dense_encoder)
with: model = keras.models.Model(inputs=base_model.input, outputs = img_dense_encoder)
Upvotes: 3