Reputation: 970
I need to create a scale matrix that is autograd compatible, works on B,C,H,W tensors, and takes input values (possibly generated randomly) for controlling the scaling. How can I generate and use a scale matrix for this?
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
# Load image
def preprocess_simple(image_name, image_size):
Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
image = Image.open(image_name).convert('RGB')
return Loader(image).unsqueeze(0)
# Save image
def deprocess_simple(output_tensor, output_name):
output_tensor.clamp_(0, 1)
Image2PIL = transforms.ToPILImage()
image = Image2PIL(output_tensor.squeeze(0))
image.save(output_name)
def get_scale_mat(theta):
...
return scale_mat
def scale_img(x, theta, dtype):
scale_mat = get_scale_mat(theta)
# Can F.affine_grid & F.grid_sample be used with a scale matrix?
grid = F.affine_grid(scale_mat , x.size()).type(dtype)
x = F.grid_sample(x, grid)
return x
# Shear tensor
test_input = # Test image
scale = 5 # Example value
scaled_tensor = scale_img(test_input, scale)
Upvotes: 1
Views: 598
Reputation: 970
This is how you create and use a 3x2 scale matrix with F.affine_grid and F.grid_sample:
def get_scale_mat(m, device, dtype):
scale_mat = torch.tensor([[m, 0., 0.],
[0., m, 0.]])
return scale_mat
def scale_tensor(x, scale):
assert scale > 0
scale_matrix = get_scale_mat(scale, x.device, x.dtype)[None, ...].repeat(x.shape[0],1,1)
grid = F.affine_grid(scale_matrix, x.size())
x = F.grid_sample(x, grid)
return x
Upvotes: 1