Reputation: 3
my dataframe looks like:
df:
A B
0 a g
1 f g
2 a g
3 a d
4 h d
5 f a
for top 2 most frequent values per column (n=2), the output should be:
top_df:
A B
0 a g
1 f d
Thank you
Upvotes: 0
Views: 3026
Reputation: 883
SOLUTION:
To get the n
most frequent values, just subset .value_counts()
and grab the index:
import pandas as pd
df = pd.read_csv('test.csv')
# METHOD 1 : Lil lengthy and inefficient
top_dict = {}
n_freq_items = 2
top_dict['A'] = df.A.value_counts()[:n_freq_items].index.tolist()
top_dict['B'] = df.B.value_counts()[:n_freq_items].index.tolist()
top_df = pd.DataFrame(top_dict)
print(top_df)
df.apply(lambda x: pd.Series(x.value_counts()[:n_freq_items].index))
# METHOD 2 : Small, and better : taking this method from @myccha. As I found this better
top_df = df.apply(lambda x: pd.Series(x.value_counts()[:n_freq_items].index))
print(top_df)
INPUT DATA:
# test.csv
A,B
a,g
f,g
a,g
a,d
h,d
f,a
OUTPUT:
A B
0 a g
1 f d
NOTE: I have taken solution from @myccha, another answer from this post, as I found his answer more helpful, added it as METHOD 2.
Upvotes: 0
Reputation: 622
Something like this could help
maxes = dict()
for col in df.columns:
frequencies = df[col].value_counts()
# value counts automatically sorts, so just take the first 2
max[col] = frequencies[:2]
Upvotes: 0
Reputation: 1018
This should work
n = 2
df.apply(lambda x: pd.Series(x.value_counts().index[:n]))
Upvotes: 2