Reputation: 107
I am trying to create a list of data with NA values for each ID# in a dataframe so I can keep track of missing data. I have a dataframe where each row is an ID# and each column is a variable name. Each ID# may have different missing data so I want to condense this information down into a two column table. Currently, my table looks something like this:
ID Var1 Var2 Var3 Var4 Var5
1 10 T NA 2 NA
2 15 F 50 2 NA
3 12 NA 41 2 NA
4 NA NA NA 1 NA
5 NA F NA NA NA
...
I am hoping to get output that looks something like this:
ID Missing Variables
1 Var3, Var5
2 Var5
3 Var2, Var5
4 Var1, Var2, Var3, Var5
5 Var1, Var3, Var4, Var5
...
I'm confused how I would return to column name for each missing data entry. I know you can probably do something like this with a for loop but beyond that I get a little lost. Any help is much appreciated!
Upvotes: 4
Views: 2282
Reputation: 26218
A dplyr
way of solving it
df <- read.table(text = 'ID Var1 Var2 Var3 Var4 Var5
1 10 T NA 2 NA
2 15 F 50 2 NA
3 12 NA 41 2 NA
4 NA NA NA 1 NA
5 NA F NA NA NA', header = T)
library(dplyr)
df %>%
rowwise() %>%
summarise(ID, missing = toString(names(.)[-1][seq_along(c_across(starts_with('Var'))) * is.na(c_across(starts_with('Var')))]),
.groups = 'drop')
#> # A tibble: 5 x 2
#> ID missing
#> <int> <chr>
#> 1 1 Var3, Var5
#> 2 2 Var5
#> 3 3 Var2, Var5
#> 4 4 Var1, Var2, Var3, Var5
#> 5 5 Var1, Var3, Var4, Var5
Created on 2021-05-15 by the reprex package (v2.0.0)
Upvotes: 0
Reputation: 1441
Here is one possible base R approach, which returns a vector:
result <- apply(
X = is.na(my_df),
MARGIN = 1,
FUN = function(x) paste(colnames(my_df)[x], collapse = ", ")
)
> result
[1] "Var3, Var5" "Var5" "Var2, Var5" "Var1, Var2, Var3, Var5" "Var1, Var3, Var4, Var5"
It looks like you are requesting a data.frame
object, and you can get there easily:
data.frame(ID = my_df$ID, `Missing Variables` = result, check.names = FALSE)
# Note that the data.frame specification does not consider variable names
# containing spaces to be syntactically valid, so you have to disable the
# check if you want the variable name you have specified. This may cause
# other problems 'down the line'.
ID Missing Variables
1 1 Var3, Var5
2 2 Var5
3 3 Var2, Var5
4 4 Var1, Var2, Var3, Var5
5 5 Var1, Var3, Var4, Var5
However you also said that you are looking for a list
- if so:
> setNames(as.list(result), test$ID)
$`1`
[1] "Var3, Var5"
$`2`
[1] "Var5"
$`3`
[1] "Var2, Var5"
$`4`
[1] "Var1, Var2, Var3, Var5"
$`5`
[1] "Var1, Var3, Var4, Var5"
Upvotes: 4
Reputation: 11584
Does this work:
> library(dplyr)
> df
# A tibble: 5 x 6
ID Var1 Var2 Var3 Var4 Var5
<dbl> <dbl> <lgl> <dbl> <dbl> <lgl>
1 1 10 TRUE NA 2 NA
2 2 15 FALSE 50 2 NA
3 3 12 NA 41 2 NA
4 4 NA NA NA 1 NA
5 5 NA FALSE NA NA NA
> df$reps <- sapply(apply(df[2:6], 1, function(x) which(is.na(x))), names)
> df %>% unnest(reps) %>% group_by(ID) %>% summarise(`Missing Variables` = paste0(reps, collapse = ', '))
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 5 x 2
ID `Missing Variables`
<dbl> <chr>
1 1 Var3, Var5
2 2 Var5
3 3 Var2, Var5
4 4 Var1, Var2, Var3, Var5
5 5 Var1, Var3, Var4, Var5
Upvotes: 0
Reputation: 5747
Here is a tidyverse
solution.
df <- read_table("
ID Var1 Var2 Var3 Var4 Var5
1 10 T NA 2 NA
2 15 F 50 2 NA
3 12 NA 41 2 NA
4 NA NA NA 1 NA
5 NA F NA NA NA", col_names = TRUE)
library(dplyr)
library(tidyr)
df %>%
mutate(across(starts_with("var"), is.na)) %>% # replace all NA with TRUE and else FALSE
pivot_longer(-ID, names_to = "var") %>% # pivot longer
filter(value) %>% # remove the FALSE rows
group_by(ID) %>% # group by the ID
summarise(`Missing Variables` = toString(var)) # convert the variable names to a string column
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 5 x 2
ID `Missing Variables`
<dbl> <chr>
1 1 Var3, Var5
2 2 Var5
3 3 Var2, Var5
4 4 Var1, Var2, Var3, Var5
5 5 Var1, Var3, Var4, Var5
Upvotes: 8