Reputation: 81
After I get all the data I need inside df_base (I will not include it for sake of simplicity), I want to return df_product_final with columns:
For the first 2 columns it isn't a problem because I just copy the columns from df_base and paste them inside df_product_final.
For SpeedAvg I need to insert into df_product_final the average speed for that product until a new product shows up inside the column Product.
My code:
df_product_final['Product'] = df_product_total['Product']
df_product_final['Speed'] = df_base['production'] / df_base['time_production']
df_product_final=df_product_final.fillna(0)
df_product_final['SpeedAvg'] = df_product_final["Speed"].groupby(df_product_final['Product']).mean()
df_product_final['newindex'] = df_base['date_key']+df_base['hour']+df_base['minute']
df_product_final['newindex'] = pd.to_datetime(df_product_final['newindex'], utc=1, format = "%Y%m%d%H%M%S")
df_product_final.set_index('newindex',inplace=True)
df_product_final=df_product_final.fillna(0)
df_product_final:
newindex Product Speed SpeedAvg
2020-10-15 22:00:00+00:00 0 0.000000 52.944285
2020-10-15 23:00:00+00:00 0 0.000000 0.000000
2020-10-16 00:00:00+00:00 0 0.000000 0.000000
2020-10-16 01:00:00+00:00 0 0.000000 0.000000
2020-10-16 02:00:00+00:00 0 0.000000 0.000000
...
2020-10-16 20:00:00+00:00 0 154.000000 0.000000
2020-10-16 21:00:00+00:00 0 150.000000 0.000000
I would like to get this result instead:
newindex Product Speed SpeedAvg
2020-10-15 22:00:00+00:00 0 0.000000 52.944285
2020-10-15 23:00:00+00:00 0 0.000000 52.944285
2020-10-16 00:00:00+00:00 0 0.000000 52.944285
2020-10-16 01:00:00+00:00 0 0.000000 52.944285
...
2020-10-16 20:00:00+00:00 0 154.000000 52.944285
2020-10-16 21:00:00+00:00 0 0.000000 52.944285
To make things ever more complicated there could be the same product, but separated for more than a hour. In that case my SpeedAvg depends on these new value and not from the previous values.
example:
Product Speed SpeedAvg
newindex
2020-10-15 22:00:00+00:00 0 0.000000 52.944285
2020-10-15 23:00:00+00:00 0 0.000000 52.944285
2020-10-16 00:00:00+00:00 0 0.000000 52.944285
2020-10-16 01:00:00+00:00 0 0.000000 52.944285
2020-10-16 02:00:00+00:00 1 10.000000 10.000000
2020-10-16 03:00:00+00:00 1 10.000000 10.000000
2020-10-16 04:00:00+00:00 1 10.000000 10.000000
2020-10-16 05:00:00+00:00 1 10.000000 10.000000
2020-10-16 06:00:00+00:00 1 10.000000 10.000000
2020-10-16 07:00:00+00:00 0 0.000000 31.500000
2020-10-16 08:00:00+00:00 0 0.000000 31.500000
2020-10-16 16:00:00+00:00 0 183.000000 31.500000
2020-10-16 17:00:00+00:00 0 69.000000 31.500000
2020-10-16 18:00:00+00:00 0 0.000000 31.500000
2020-10-16 19:00:00+00:00 0 0.000000 31.500000
2020-10-16 20:00:00+00:00 0 0.000000 31.500000
2020-10-16 21:00:00+00:00 0 0.000000 31.500000
I'm sorry in advance if I wasn't very comprehensive and I'll give every bit of information necessary to solve this problem.
Upvotes: 2
Views: 143
Reputation: 81
i think that i found an easier solution to solve my problem:
starting from an empty dictionary I'm inserting all the keys of df_base inside of it, like this:
product_keys = {}
product_keys = df_base['product_key'].drop_duplicates().reset_index(inplace=False, drop=True).to_dict()
the resulting dictionary will look something like:
{0: 2,
1: 1,
2: 31
}
after this step using df.apply() i can iterate every row of the dataframe, changing the row value of the product key with the key of the dictionary just made:
df_product_final['Product'] = df_base['product_key']
df_product_final.apply(
self.keys_from_value,
dict = product_keys,
axis='columns',
raw = False,
result_type='broadcast',
)
self.keys_from_value:
def keys_from_value(self, row, dict):
if row is None:
return
else:
row['Product'] = list(dict.keys())[list(dict.values()).index(row['Product'])]
return row
the last step is all about calculating and inserting the correct SpeedAvg inside the dataframe (it's quite easy: the first loop is for obtaining the column group_id, based on the just modified rows; the second loop instead is inserting the SpeedAvg based on the group_id):
gid = 0
for i, row in df_base.iterrows():
if row['diff'] != 0:
gid += 1
df_base.at[i,'group_id'] = gid
avg = df_product_final["Speed"].groupby(df_base['group_id']).mean()
#avg is a Pandas Series of all the SpeedAvg based on their position relative to #the list
for i, row in df_product_final.iterrows():
for row_avg in avg.index.values.tolist():
if row.at['group_id'] == row_avg:
df_product_final.at[i,'SpeedAvg'] = avg[row_avg]
this is my resulting dataframe (df_product_final) after these steps:
Product Speed SpeedAvg
newindex
2020-10-20 09:00:00+00:00 0 0.000000 0.000000
2020-10-20 09:00:00+00:00 1 0.000000 104.528338
2020-10-20 10:00:00+00:00 1 0.000000 104.528338
2020-10-20 11:00:00+00:00 1 0.000000 104.528338
2020-10-20 12:00:00+00:00 1 68.375000 104.528338
2020-10-20 13:00:00+00:00 1 188.074074 104.528338
2020-10-20 14:00:00+00:00 1 172.192982 104.528338
2020-10-20 15:00:00+00:00 1 162.553571 104.528338
2020-10-20 16:00:00+00:00 1 178.867925 104.528338
2020-10-20 17:00:00+00:00 1 181.844828 104.528338
2020-10-20 18:00:00+00:00 1 93.375000 104.528338
2020-10-19 20:00:00+00:00 0 0.000000 0.000000
2020-10-19 21:00:00+00:00 0 0.000000 0.000000
2020-10-19 22:00:00+00:00 0 0.000000 0.000000
2020-10-19 23:00:00+00:00 0 0.000000 0.000000
2020-10-20 00:00:00+00:00 0 0.000000 0.000000
2020-10-20 01:00:00+00:00 0 0.000000 0.000000
2020-10-20 02:00:00+00:00 0 0.000000 0.000000
2020-10-20 03:00:00+00:00 0 0.000000 0.000000
2020-10-20 04:00:00+00:00 0 0.000000 0.000000
2020-10-20 05:00:00+00:00 0 0.000000 0.000000
2020-10-20 06:00:00+00:00 0 0.000000 0.000000
2020-10-20 07:00:00+00:00 0 0.000000 0.000000
2020-10-20 08:00:00+00:00 0 0.000000 0.000000
2020-10-20 09:00:00+00:00 2 0.000000 95.025762
2020-10-20 10:00:00+00:00 2 0.000000 95.025762
2020-10-20 11:00:00+00:00 2 0.000000 95.025762
2020-10-20 12:00:00+00:00 2 68.375000 95.025762
2020-10-20 13:00:00+00:00 2 188.074074 95.025762
2020-10-20 14:00:00+00:00 2 172.192982 95.025762
2020-10-20 15:00:00+00:00 2 162.553571 95.025762
2020-10-20 16:00:00+00:00 2 178.867925 95.025762
2020-10-20 17:00:00+00:00 2 181.844828 95.025762
2020-10-20 18:00:00+00:00 2 93.375000 95.025762
2020-10-20 19:00:00+00:00 2 0.000000 95.025762
Upvotes: 0
Reputation: 632
Found another solution that does use group by. Lmk if this works for you.
def _mean(df):
df['SpeedAvg'] = df['Speed'].mean()
return df
df_product_final = df_product_final.groupby(df['Product'].ne(df['Product'].shift()).cumsum()).apply(_mean)
adapted from an answer to this post
Upvotes: 1