Reputation: 25
I have a dataframe, where I am trying to find two things: 1) the start of an event and, 2) the end of the event. The start of an event is based on a cumulative sum threshold, whereas the end of an event is dependent on there being 5 rows with 0 values between the last row with a value greater than 0, and the current time.
Example data is as follows
# hourly time series
a <- seq(from=as.POSIXct("2012-06-01 0:00", tz="UTC"),
to=as.POSIXct("2012-09-01 00:00", tz="UTC"),
by="hour")
# mock data
b <- sample.int(10, 2209, replace = TRUE)*sample(c(0,1), replace=TRUE, size=2209)
# mock time series data table
c <- data.table(a,b)
a b
1: 2012-06-01 00:00:00 0
2: 2012-06-01 01:00:00 0
3: 2012-06-01 02:00:00 0
4: 2012-06-01 03:00:00 7
5: 2012-06-01 04:00:00 0
---
2205: 2012-08-31 20:00:00 8
2206: 2012-08-31 21:00:00 4
2207: 2012-08-31 22:00:00 2
2208: 2012-08-31 23:00:00 0
2209: 2012-09-01 00:00:00 0
---
I want to identify events within the time series, based on a threshold of a cumulative sum of 10 (in column b). So when a date/time has a cumulative sum of 10 or more, the event starts.
c$cumsum <- with(c, ave(b, cumsum(b == 0), FUN = cumsum))
a b cumsum
1: 2012-06-01 00:00:00 0 0
2: 2012-06-01 01:00:00 0 0
3: 2012-06-01 02:00:00 0 0
4: 2012-06-01 03:00:00 7 7
5: 2012-06-01 04:00:00 0 0
---
2205: 2012-08-31 20:00:00 8 8
2206: 2012-08-31 21:00:00 4 12
2207: 2012-08-31 22:00:00 2 14
2208: 2012-08-31 23:00:00 0 0
2209: 2012-09-01 00:00:00 0 0
For example, in the above code, an event would begin at 2012-08-31 21:00:00 due to the cumulative sum of b = 12. Also, although 2012-08-31 22:00:00 has a cumsum of 14, it is not the start of an event, as the event had begun the hour prior to it (based on the condition of event beginning when cumsum => 10).
I also need to find the end of the event, and this is where I'm stuck. The end of the event would occur when 5 hours have passed, without any values (i.e. 5 rows with 0's in column b). Then I would like to create a dataframe, which consists of only events (i.e. date/time of start of an event, with the corresponding date/time of the end of that same event). This would look like (manual, fake example):
# dataframe for event start, and the corresponding cumsum of b
event_start cumsum_b
1: 2012-06-01 00:00:00 12
2: 2012-06-09 11:00:00 11
3: 2012-06-15 02:00:00 10
# dataframe for event end
event_end b
1: 2012-06-01 00:7:00 0
2: 2012-06-09 18:00:00 0
3: 2012-06-15 12:00:00 0
Upvotes: 2
Views: 251
Reputation: 9087
library(tidyverse)
df <- tibble(
a = seq.Date(from = as.Date('2020-01-01'), length.out = 20, by = "days"),
b = c(0, 0, 0, 7, 0, 8, 12, 0, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 0)
)
We can find the ends using lag
. Then use cumsum
and cummax
to create the resetting cumulative sum.
events <-
df %>%
mutate(
is_end = coalesce(b == 0 & lag(b) == 0 & lag(b, 2) == 0 & lag(b, 3) == 0 & lag(b, 4) == 0 & lag(b, 5) != 0, FALSE),
cumsum = cumsum(b) - cummax(is_end * cumsum(b)),
is_event = cumsum >= 10,
start = is_event & !lag(is_event),
end = !is_event & lag(is_event)
)
events
#> # A tibble: 20 x 7
#> a b is_end cumsum is_event start end
#> <date> <dbl> <lgl> <dbl> <lgl> <lgl> <lgl>
#> 1 2020-01-01 0 FALSE 0 FALSE FALSE NA
#> 2 2020-01-02 0 FALSE 0 FALSE FALSE FALSE
#> 3 2020-01-03 0 FALSE 0 FALSE FALSE FALSE
#> 4 2020-01-04 7 FALSE 7 FALSE FALSE FALSE
#> 5 2020-01-05 0 FALSE 7 FALSE FALSE FALSE
#> 6 2020-01-06 8 FALSE 15 TRUE TRUE FALSE
#> 7 2020-01-07 12 FALSE 27 TRUE FALSE FALSE
#> 8 2020-01-08 0 FALSE 27 TRUE FALSE FALSE
#> 9 2020-01-09 0 FALSE 27 TRUE FALSE FALSE
#> 10 2020-01-10 0 FALSE 27 TRUE FALSE FALSE
#> 11 2020-01-11 0 FALSE 27 TRUE FALSE FALSE
#> 12 2020-01-12 0 TRUE 0 FALSE FALSE TRUE
#> 13 2020-01-13 0 FALSE 0 FALSE FALSE FALSE
#> 14 2020-01-14 14 FALSE 14 TRUE TRUE FALSE
#> 15 2020-01-15 3 FALSE 17 TRUE FALSE FALSE
#> 16 2020-01-16 0 FALSE 17 TRUE FALSE FALSE
#> 17 2020-01-17 0 FALSE 17 TRUE FALSE FALSE
#> 18 2020-01-18 0 FALSE 17 TRUE FALSE FALSE
#> 19 2020-01-19 0 FALSE 17 TRUE FALSE FALSE
#> 20 2020-01-20 0 TRUE 0 FALSE FALSE TRUE
Then, pull out the start and end dates.
tibble(
event_start = events %>% filter(start) %>% pull(a),
event_end = events %>% filter(end) %>% pull(a)
)
#> # A tibble: 2 x 2
#> event_start event_end
#> <date> <date>
#> 1 2020-01-06 2020-01-12
#> 2 2020-01-14 2020-01-20
If you want don't want to manually specify the lags
find_end <- function(x, n) {
is_n_consecutive_zeros <-
map(0:(n-1), ~lag(x, .)) %>%
pmap_lgl(function(...) all(c(...) == 0))
coalesce(is_n_consecutive_zeros & lag(x, n) != 0, FALSE)
}
df %>%
mutate(
is_end = find_end(b, 5),
cumsum = cumsum(b) - cummax(is_end * cumsum(b)),
is_event = cumsum >= 10,
start = is_event & !lag(is_event),
end = !is_event & lag(is_event)
)
#> # A tibble: 20 x 7
#> a b is_end cumsum is_event start end
#> <date> <dbl> <lgl> <dbl> <lgl> <lgl> <lgl>
#> 1 2020-01-01 0 FALSE 0 FALSE FALSE NA
#> 2 2020-01-02 0 FALSE 0 FALSE FALSE FALSE
#> 3 2020-01-03 0 FALSE 0 FALSE FALSE FALSE
#> 4 2020-01-04 7 FALSE 7 FALSE FALSE FALSE
#> 5 2020-01-05 0 FALSE 7 FALSE FALSE FALSE
#> 6 2020-01-06 8 FALSE 15 TRUE TRUE FALSE
#> 7 2020-01-07 12 FALSE 27 TRUE FALSE FALSE
#> 8 2020-01-08 0 FALSE 27 TRUE FALSE FALSE
#> 9 2020-01-09 0 FALSE 27 TRUE FALSE FALSE
#> 10 2020-01-10 0 FALSE 27 TRUE FALSE FALSE
#> 11 2020-01-11 0 FALSE 27 TRUE FALSE FALSE
#> 12 2020-01-12 0 TRUE 0 FALSE FALSE TRUE
#> 13 2020-01-13 0 FALSE 0 FALSE FALSE FALSE
#> 14 2020-01-14 14 FALSE 14 TRUE TRUE FALSE
#> 15 2020-01-15 3 FALSE 17 TRUE FALSE FALSE
#> 16 2020-01-16 0 FALSE 17 TRUE FALSE FALSE
#> 17 2020-01-17 0 FALSE 17 TRUE FALSE FALSE
#> 18 2020-01-18 0 FALSE 17 TRUE FALSE FALSE
#> 19 2020-01-19 0 FALSE 17 TRUE FALSE FALSE
#> 20 2020-01-20 0 TRUE 0 FALSE FALSE TRUE
Upvotes: 1