reshad
reshad

Reputation: 11

How to avoid warning: UndefinedMetricWarning:

I'm getting the warning below, upon running the code. However, the result will print the accuracy1, precision1, and recall1. How to avoid the warning?

warning:

UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no 
predicted samples. 'precision', 'predicted', average, warn_for)
acc = []
pre = []
recall = []
 for i in range(iters):
     features_train, features_test, labels_train, labels_test = \
     train_test_split(features, labels, test_size = 0.3, random_state = i)
     grid_search.fit(features_train, labels_train)
     predicts = grid_search.predict(features_test)

     acc = acc + [accuracy_score(labels_test, predicts)]
     pre = pre + [precision_score(labels_test, predicts)]
     recall = recall + [recall_score(labels_test, predicts)]
     print "accuracy1: {}".format(np.mean(acc))
     print "precision1: {}".format(np.mean(pre))
     print "recall1: {}".format(np.mean(recall))
     best_params = grid_search.best_estimator_.get_params()
     for param_name in params.keys():
     print("%s = %r, " % (param_name, best_params[param_name]))

Upvotes: 0

Views: 556

Answers (2)

reshad
reshad

Reputation: 11

import warnings
warnings.simplefilter('ignore')

The above module import fixed my issue.

Upvotes: 1

Arvind Kumar
Arvind Kumar

Reputation: 451

You can do it as:

import warnings
warnings.filterwarnings("ignore")

Upvotes: 0

Related Questions