Reputation: 783
Using the following data in train_data_sample and the below code, how can I iterate through each index latitude and longitude? (see below for wished results)
latitude longitude price
0 55.6632 12.6288 2595000
1 55.6637 12.6291 2850000
2 55.6637 12.6291 2850000
3 55.6632 12.6290 3198000
4 55.6632 12.6290 2995000
5 55.6638 12.6294 2395000
6 55.6637 12.6291 2995000
7 55.6642 12.6285 4495000
8 55.6632 12.6285 3998000
9 55.6638 12.6294 3975000
from numpy import cos, sin, arcsin, sqrt
from math import radians
def haversine(row):
for index in train_data_sample.index:
lon1 = train_data_sample["longitude"].loc[train_data_sample.index==index]
lat1 = train_data_sample["latitude"].loc[train_data_sample.index==index]
lon2 = row['longitude']
lat2 = row['latitude']
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * arcsin(sqrt(a))
km = 6367 * c
return km
def insert_dist(df):
df["distance"+str(index)] = df.apply(lambda row: haversine(row), axis=1)
return df
print(insert_dist(train_data_sample))
This is the result for index 0. It looks at the coordinates for index 0 versus every other row and returns the distance in meters. So the distance between coordinates for index 0 and 1 are ~50 meters.
latitude longitude price distance0
0 55.6632 12.6288 2595000 0.000000
1 55.6637 12.6291 2850000 0.058658
2 55.6637 12.6291 2850000 0.058658
3 55.6632 12.6290 3198000 0.012536
4 55.6632 12.6290 2995000 0.012536
5 55.6638 12.6294 2395000 0.076550
6 55.6637 12.6291 2995000 0.058658
7 55.6642 12.6285 4495000 0.112705
8 55.6632 12.6285 3998000 0.018804
9 55.6638 12.6294 3975000 0.076550
The end result should return not only distance0, but also distance1, distance2, etc.
Upvotes: 0
Views: 855
Reputation: 788
It seems like your making things a bit more complicating than necessary. By nesting a for loop in another for loop you can achieve what you want in a more straightforward way.
from numpy import cos, sin, arcsin, sqrt
from math import radians
import pandas as pd
import numpy as np
# recreate your dataframe
data = [[55.6632, 12.6288, 2595000],
[55.6637, 12.6291, 2850000],
[55.6637, 12.6291, 2850000],
[55.6632, 12.6290, 3198000]]
data = np.array(data)
train_data_sample = pd.DataFrame(data, columns = ["latitude", "longitude", "price"])
# copied "distance calculating" code here
def GetDistance(lon1, lat1, lon2, lat2):
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * arcsin(sqrt(a))
km = 6367 * c
return km
# loop over every row with iterrows
for index, row in train_data_sample.iterrows():
distances = []
lat1, lon1 = row[["longitude", "longitude"]]
# loop again over every row with iterrows
for index_2, row_2 in train_data_sample.iterrows():
lat2, lon2 = row_2[["longitude", "longitude"]]
# get the distance
distances.append( GetDistance(lon1, lat1, lon2, lat2) )
# add the column to the dataframe
train_data_sample["distance"+str(index)] = distances
Upvotes: 1
Reputation: 685
I would not use apply here as it works row wise, but would go for a matrix approach using numpy instead.
First convert all degrees into radians:
df['latitude'] *= np.pi/180
df['longitude'] *= np.pi/180
Then turn the latitude and longitude vectors into matrices by duplicating the vector as many times as the length of the vector. For lat2/lon2 take the transpose.
lat1 = np.tile(df['latitude'].values.reshape([-1,1]),(1,df.shape[0]))
lon1 = np.tile(df['longitude'].values.reshape([-1,1]),(1,df.shape[0]))
lat2 = np.transpose(lat1)
lon2 = np.transpose(lon1)
Now you have 4 matrices, which contain all combinations between the lat/lon pairs on which you can simply apply your function all at once to get all the distances in one go:
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * arcsin(sqrt(a))
km = 6367 * c
This result can be stitched to your original dataframe:
result = pd.concat([df,pd.DataFrame(km,columns=df.index)],axis=1)
Upvotes: 0