Reputation: 2493
When trying to load parquet files with schema merge
df = spark.read.option("mergeSchema", "true").parquet('some_path/partition_date')
df.show()
I'm getting the following exception:
Py4JJavaError: An error occurred while calling o421.parquet.
: org.apache.spark.SparkException: Failed merging schema:
root
....
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$mergeSchemasInParallel$1.apply(ParquetFileFormat.scala:643)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$mergeSchemasInParallel$1.apply(ParquetFileFormat.scala:639)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$.mergeSchemasInParallel(ParquetFileFormat.scala:639)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat.inferSchema(ParquetFileFormat.scala:241)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$6.apply(DataSource.scala:180)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$6.apply(DataSource.scala:180)
at scala.Option.orElse(Option.scala:289)
at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:179)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:373)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:643)
at sun.reflect.GeneratedMethodAccessor137.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Failed to merge fields 'some_field_name' and 'some_field_name'. Failed to merge incompatible data types int and bigint
Is there a better way to read the data having some schema evolution including incompatible types? Thanks
Upvotes: 6
Views: 5448
Reputation: 657
You could load each different files separately by forcing the schema and/or using casts. Then, you can do a union.
Upvotes: 2