Reputation: 954
In a dataset I want to know where there are missing values, therefore i use which(is.na(df)). Then I do for example imputation in this dataset and thereafter I want to extract the imputed positions. But I dont know how to extract these data. Does anyone have suggestions? Thanks!
id <- factor(rep(letters[1:2], each=5))
A <- c(1,2,NA,67,8,9,0,6,7,9)
B <- c(5,6,31,9,8,1,NA,9,7,4)
C <- c(2,3,5,NA,NA,2,7,6,4,6)
D <- c(6,5,89,3,2,9,NA,12,69,8)
df <- data.frame(id, A, B,C,D)
df
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a NA 31 5 89
4 a 67 9 NA 3
5 a 8 8 NA 2
6 b 9 1 2 9
7 b 0 NA 7 NA
8 b 6 9 6 12
9 b 7 7 4 69
10 b 9 4 6 8
pos_na <- which(is.na(df))
pos_na
[1] 13 27 34 35 47
# after imputation
id <- factor(rep(letters[1:2], each=5))
A <- c(1,2,4,67,8,9,0,6,7,9)
B <- c(5,6,31,9,8,1,65,9,7,4)
C <- c(2,3,5,8,2,2,7,6,4,6)
D <- c(6,5,89,3,2,9,6,12,69,8)
df <- data.frame(id, A, B,C,D)
df
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a 4 31 5 89
4 a 67 9 8 3
5 a 8 8 2 2
6 b 9 1 2 9
7 b 0 65 7 6
8 b 6 9 6 12
9 b 7 7 4 69
10 b 9 4 6 8
Wanted output: 4,65,8,2 6
Upvotes: 0
Views: 237
Reputation: 887213
Instead of wrapping with which
, we can keep it as a logical matrix
i1 <- is.na(df[-1])
Then, after the imputation, just use the i1
df[-1][i1]
#[1] 4 65 8 2 6
Note, the -1
indexing for columns is to remove the first column which is 'character'
Upvotes: 0
Reputation: 389012
To store positions of NA
use which
with arr.ind = TRUE
which gives row and column numbers.
pos_na <- which(is.na(df), arr.ind = TRUE)
pos_na
# row col
#[1,] 3 2
#[2,] 7 3
#[3,] 4 4
#[4,] 5 4
#[5,] 7 5
So that after imputation you can extract the values directly.
as.numeric(df[pos_na])
[1] 4 65 8 2 6
Upvotes: 1