Reputation: 741
I have a 1D numpy array X with the shape (1000,)
. I want to inject in random (uniform) places 10 random (normal) values and thus obtain the numpy array of shape (1010,)
. How to do it efficiently in numpy?
Upvotes: 5
Views: 1510
Reputation: 785
Not sure if this is the most efficient way, but it works, at least.
A = np.arange(1000)
for i in np.random.randint(low = 0, high = 1000, size = 10):
A = np.concatenate((A[:i], [np.random.normal(),], A[i:]))
Edit, checking performance:
def insert_random(A):
for i in np.random.randint(low = 0, high = len(A), size = 10):
A = np.concatenate((A[:i], [np.random.normal(),], A[i:]))
return A
A = np.arange(1000)
%timeit test(A)
83.2 µs ± 2.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
So definitely not the most efficient. np.insert
seems to be the way to go.
Upvotes: 0
Reputation: 221584
Here's one based on masking -
def addrand(a, N):
n = len(a)
m = np.concatenate((np.ones(n, dtype=bool), np.zeros(N, dtype=bool)))
np.random.shuffle(m)
out = np.empty(len(a)+N, dtype=a.dtype)
out[m] = a
out[~m] = np.random.uniform(N)
return out
Sample run -
In [22]: a = 10+np.random.rand(20)
In [23]: a
Out[23]:
array([10.65458302, 10.18034826, 10.08652451, 10.03342622, 10.63930492,
10.48439184, 10.2859206 , 10.91419282, 10.56905636, 10.01595702,
10.21063965, 10.23080433, 10.90546147, 10.02823502, 10.67987108,
10.00583747, 10.24664158, 10.78030108, 10.33638157, 10.32471524])
In [24]: addrand(a, N=3) # adding 3 rand numbers
Out[24]:
array([10.65458302, 10.18034826, 10.08652451, 10.03342622, 0.79989563,
10.63930492, 10.48439184, 10.2859206 , 10.91419282, 10.56905636,
10.01595702, 0.23873077, 10.21063965, 10.23080433, 10.90546147,
10.02823502, 0.66857723, 10.67987108, 10.00583747, 10.24664158,
10.78030108, 10.33638157, 10.32471524])
Timings :
In [71]: a = np.random.rand(1000)
In [72]: %timeit addrand(a, N=10)
37.3 µs ± 273 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
# @a_guest's soln
In [73]: %timeit np.insert(a, np.random.choice(len(a), size=10), np.random.normal(size=10))
63.3 µs ± 2.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Note: If you are working with bigger arrays, it seems np.insert
one is doing better.
Upvotes: 1
Reputation: 208
You could use numpy.insert(arr, obj, values, axis=None)
.
import numpy as np
a = np.arange(1000)
a = np.insert(a, np.random.randint(low = 1, high = 999, size=10), np.random.normal(loc=0.0, scale=1.0, size=10))
Keep in mind that insert
doesn't automatically change your original array, but it returns a modified copy.
Upvotes: 0
Reputation: 36279
You can use np.insert
together with np.random.choice
:
n = 10
np.insert(a, np.random.choice(len(a), size=n), np.random.normal(size=n))
Upvotes: 4