Reputation: 450
I suppose, it should be easy question for experienced guys. I want to group records by week' day and to have number of records at particular week-day. Here is my DataFrame rent_week.info():
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1689 entries, 3 to 1832
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 1689 non-null int64
1 createdAt 1689 non-null datetime64[ns]
2 updatedAt 1689 non-null datetime64[ns]
3 endAt 1689 non-null datetime64[ns]
4 timeoutAt 1689 non-null datetime64[ns]
5 powerBankId 1689 non-null int64
6 station_id 1689 non-null int64
7 endPlaceId 1686 non-null float64
8 endStatus 1689 non-null object
9 userId 1689 non-null int64
10 station_name 1689 non-null object
dtypes: datetime64[ns](4), float64(1), int64(4), object(2)
memory usage: 158.3+ KB
Data in 'createdAt' columns looks like "2020-07-19T18:00:27.190010000" I am trying to add new column:
rent_week['a_day'] = rent_week['createdAt'].strftime('%A')
and receive error back: AttributeError: 'Series' object has no attribute 'strftime'. Meanwhile, if I write:
a_day = datetime.today()
print(a_day.strftime('%A'))
it shows expected result. In my understanding, a_day and rent_week['a_day'] have similar type datetime. Even request through:
rent_week['a_day'] = pd.to_datetime(rent_week['createdAt']).strftime('%A')
shows me the same error: no strftime attribute. I even didn't start grouping my data. What I am expecting in result is a DataFrame with information like:
a_day number_of_records
Monday 101
Tuesday 55
...
Upvotes: 1
Views: 402
Reputation: 450
Thank you Quamar and Ojdo for your contribution. I found the problem: it is in index
<ipython-input-41-a42a82727cdd>:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
rent_week['a_day'] = rent_week['createdAt'].dt.strftime('%A')
as soon as I reset index
rent_week.reset_index()
both variants are working as expected!
Upvotes: 1
Reputation: 176
You can make a lambda function for conversion and apply that function to the column of "createdAt" Columns. After this step you can groupby based on your requirement. You can take help from this code:
rent_week['a_day'] = rent_week['createdAt'].apply(lambda x: x.strftime('%A'))
Upvotes: 1
Reputation: 8900
Try a_day.dt.strftime('%A')
- note the additional .dt
on your DataFrame column/Series object.
Background: the "similar" type assumption you make is almost correct. However, as a column could be of many types (numeric, string, datetime, geographic, ...), the methods of the underlying values are typically stored in a namespace to not clutter the already broad API (method count) of the Series type itself. That's why string functions are available only through .str
, and datetime functions only available through .dt
.
Upvotes: 1