Reputation: 39
Suppose I have a model
from tensorflow.keras.applications import DenseNet201
base_model = DenseNet201(input_tensor=Input(shape=basic_shape))
model = Sequential()
model.add(base_model)
model.add(Dense(400))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Dense(50, activation='softmax'))
model.save('test.hdf5')
Then I load the saved model and try to make the last 40 layers of DenseNet201
trainable and the first 161 - non-trainable:
saved_model = load_model('test.hdf5')
cnt = 44
saved_model.trainable = False
while cnt > 0:
saved_model.layers[-cnt].trainable = True
cnt -= 1
But this is not actually working because DenseNet201
is determined as a single layer and I just get index out of range error.
Layer (type) Output Shape Param #
=================================================================
densenet201 (Functional) (None, 1000) 20242984
_________________________________________________________________
dense (Dense) (None, 400) 400400
_________________________________________________________________
batch_normalization (BatchNo (None, 400) 1600
_________________________________________________________________
re_lu (ReLU) (None, 400) 0
_________________________________________________________________
dense_1 (Dense) (None, 50) 20050
=================================================================
Total params: 20,665,034
Trainable params: 4,490,090
Non-trainable params: 16,174,944
The question is how can I actually make the first 161 layers of DenseNet non-trainable and the last 40 layers trainable on a loaded model?
Upvotes: 1
Views: 629
Reputation: 14492
densenet201 (Functional)
is a nested model, therefore you can access its layers the same way you access the layers of your 'topmost' model.
saved_model.layers[0].layers
where saved_model.layers[0]
is a model with its own layers.
In your loop, you need to access the layers like this
saved_model.layers[0].layers[-cnt].trainable = True
Update
By default, the loaded model's layers are trainable (trainable=True
), therefore you will need to set the bottom layers' trainable
attribute to False
instead.
Upvotes: 1