Reputation: 90
I have a dataframe as follows:
df = {'emp': [123, 234], 'state': ['AL', 'CA'], 'start_time': ['08:00', '08:00'], 'end_time': ['17:00', '17:00']
df.head()
emp|state|start_time|end_time
123|AL|11/05/2020 08:00|11/05/2020 17:00
234|CA|11/05/2020 08:00|11/05/2020 17:00
I also have a separate dictionary as follows:
START_ADJUST = {"AL": 0, "CA": 20}
Need a python function that for each state in df adds the number of minutes that is a value for that state key in the dictionary to the value of the military time in 'start_time in the dataframe.
Here's what I tried:
df['prep_mins'] = df['state'].map(START_ADJUST)
df['start_time'] = pd.to_datetime(df['start_time']) + pd.to_timedelta(df['prep_mins'], unit = 'm')
Expected outcome:
emp|state|start_time|end_time
123|AL|11/05/2020 08:00|11/05/2020 17:00
234|CA|11/05/2020 08:20|11/05/2020 17:00
Outcome I'm getting:
emp|state|start_time|end_time
123|AL|11/05/2020 08:00|11/05/2020 17:00
234|CA|11/05/2020 08:00|11/05/2020 17:00
Two One questions:
2) How do add the value of a dictionary value to a column in a data fame?
Upvotes: 0
Views: 50
Reputation: 3001
Here is one approach. I added date to original data, and changed the time offset from 0 to 1, to verify that all adjustments get applied.
import pandas as pd
df = {'emp': [123, 234],
'state': ['AL', 'CA'],
'start_time': ['2020-11-05 08:00', '2020-11-05 08:00'],
'end_time': ['2020-11-05 17:00', '2020-11-05 17:00'],
}
# create data frame
df = pd.DataFrame(data=df)
# convert data type
df['start_time'] = pd.to_datetime(df['start_time'])
df['end_time'] = pd.to_datetime(df['end_time'])
# original adjustments
start_adjust = {"AL": 1, "CA": 20}
# convert data type
start_adjust = {
key: pd.to_timedelta(value, unit='minute')
for key, value in start_adjust.items()
}
# apply adjustment
df['start_time'] += df.apply(lambda x: start_adjust[x['state']], axis=1)
# results
print(df)
emp state start_time end_time
0 123 AL 2020-11-05 08:01:00 2020-11-05 17:00:00
1 234 CA 2020-11-05 08:20:00 2020-11-05 17:00:00
Upvotes: 1