Reputation: 49
I'm using the following dataframe in R:
ID <- c(LETTERS[1:10])
GLUC <- c(88,NA,110,NA,90,88,120,110,NA,90)
TGL <- c(NA,150,NA,200,210,NA,164,170,190,NA)
HDL <- c(32,60,NA,65,NA,32,NA,70,NA,75)
LDL <- c(99,NA,120,165,150,210,NA,188,190,NA)
patient_num <- data.frame(ID,GLUC,TGL,HDL,LDL)
And I want to create a matrix that has GLUC, TGL, HDL and LDL as the row names and mean, median, sd, n and n_miss as the column names. When I put in the following code:
r <- c(mean(patient_num[[varname]],na.rm=TRUE),
median(patient_num[[varname]],na.rm=TRUE),
sd(patient_num[[varname]],na.rm=TRUE),
sum(!is.na(patient_num[[varname]])),
sum(is.na(patient_num[[varname]]))
)
if (length(varname) == 1){
r <- matrix(r,nrow=T)
} else{
for (index in 2:length(varname)){
oneRow = table1(patient_num,varname[[index]])
r <- rbind(r,oneRow)
}
}
rownames(r) <- varname
colnames(r) <- c("mean","median","sd","n","n_miss")
return(r)
}
table1(patient_num,c("GLUC","TGL","HDL","LDL"))
I get an error message:
Error in .subset2(x, i, exact = exact) : recursive indexing failed at level 2
Can't seem to figure out what's wrong
Upvotes: 0
Views: 771
Reputation: 378
There's a simpler solution using sapply()
from base R
:
new_df <- sapply(patient_num, function(x) list(
mean = mean(x, na.rm = T),
sd = sd(x, na.rm = T),
n = sum(!is.na(x)),
is_na = sum(is.na(x))))
t(new_df)
#> mean sd n is_na
#>ID NA NA 10 0
#>GLUC 99.42857 13.45185 7 3
#>TGL 180.6667 23.0362 6 4
#>HDL 55.66667 19.00175 6 4
#>LDL 160.2857 40.06126 7 3
If you want only the count of non-NA entries in each row, you can just remove ID
from patient_num
and run the same code.
Note that you might want to transform new_df
back to a data.frame
.
Upvotes: 1
Reputation: 388907
You can select only one column at a time using [[
.
Here is an alternative way using dplyr
functions.
library(dplyr)
table1 <- function(data, varname) {
data %>%
select(all_of(varname)) %>%
tidyr::pivot_longer(cols = everything()) %>%
group_by(name) %>%
summarise(mean = mean(value, na.rm = TRUE),
median = median(value, na.rm = TRUE),
sd = sd(value, na.rm = TRUE),
n = sum(!is.na(value)),
n_miss = sum(is.na(value)))
}
table1(patient_num,c("GLUC","TGL","HDL","LDL"))
# A tibble: 4 x 6
# name mean median sd n n_miss
# <chr> <dbl> <dbl> <dbl> <int> <int>
#1 GLUC 99.4 90 13.5 7 3
#2 HDL 55.7 62.5 19.0 6 4
#3 LDL 160. 165 40.1 7 3
#4 TGL 181. 180 23.0 6 4
Upvotes: 0