Reputation: 63
Below is the code and output, what I'm trying to get is shown in the "exp" column, as you can see the "countif" column just counts 5 columns, but I want it to only count negative values.
So for example: index 0, df1[0]
should equal 2
What am I doing wrong?
Python
import pandas as pd
import numpy as np
a = ['A','B','C','B','C','A','A','B','C','C','A','C','B','A']
b = [2,4,1,1,2,5,-1,2,2,3,4,3,3,3]
c = [-2,4,1,-1,2,5,1,2,2,3,4,3,3,3]
d = [-2,-4,1,-1,2,5,1,2,2,3,4,3,3,3]
exp = [2,1,0,2,0,0,1,0,0,0,0,0,0,0]
df1 = pd.DataFrame({'b':b,'c':c,'d':d,'exp':exp}, columns=['b','c','d','exp'])
df1['sumif'] = df1.where(df1<0,0).sum(1)
df1['countif'] = df1.where(df1<0,0).count(1)
df1
# df1.sort_values(['a','countif'], ascending=[True, True])
Output
Upvotes: 1
Views: 111
Reputation: 34086
You don't need where
here, you can simply use df.lt
with df.sum(axis=1)
:
In [1329]: df1['exp'] = df1.lt(0).sum(1)
In [1330]: df1
Out[1330]:
b c d exp
0 2 -2 -2 2
1 4 4 -4 1
2 1 1 1 0
3 1 -1 -1 2
4 2 2 2 0
5 5 5 5 0
6 -1 1 1 1
7 2 2 2 0
8 2 2 2 0
9 3 3 3 0
10 4 4 4 0
11 3 3 3 0
12 3 3 3 0
13 3 3 3 0
EDIT: As per OP's comment including solution with iloc
and .lt
:
In [1609]: df1['exp'] = df1.iloc[:, :3].lt(0).sum(1)
Upvotes: 2
Reputation: 863166
First DataFrame.where
working different, it replace False
values to 0
here by condition (here False are greater of equal 0
), so cannot be used for count:
print (df1.iloc[:, :3].where(df1<0,0))
b c d
0 0 -2 -2
1 0 0 -4
2 0 0 0
3 0 -1 -1
4 0 0 0
5 0 0 0
6 -1 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
You need compare first 3 columns for less like 0
and sum
:
df1['exp1'] = (df1.iloc[:, :3] < 0).sum(1)
#If need compare all columns
#df1['exp1'] = (df1 < 0).sum(1)
print (df1)
b c d exp exp1
0 2 -2 -2 2 2
1 4 4 -4 1 1
2 1 1 1 0 0
3 1 -1 -1 2 2
4 2 2 2 0 0
5 5 5 5 0 0
6 -1 1 1 1 1
7 2 2 2 0 0
8 2 2 2 0 0
9 3 3 3 0 0
10 4 4 4 0 0
11 3 3 3 0 0
12 3 3 3 0 0
13 3 3 3 0 0
Upvotes: 1