Reputation: 391
I have a dataset look like this -
sample <- tibble(x = c (1,2,3,NA), y = c (5, NA,2, NA))
sample
# A tibble: 4 x 2
x y
<dbl> <dbl>
1 1 5
2 2 NA
3 3 2
4 NA NA
Now I want create a new variable Z
, which will count how many observations are in each row. For example for the sample
dataset above the first value of new variable Z
should be 2 because both x and y have values. Similarly, for 2nd row the value of Z
is 1 as there is one missing value and for 4th row, the value is 0 as there is no observations in the row.
The expected dataset looks like this -
x y z
<dbl> <dbl> <dbl>
1 1 5 2
2 2 NA 1
3 3 2 2
4 NA NA 0
I want to do this on few number of variables, not the whole dataset.
Upvotes: 0
Views: 724
Reputation: 2301
apply
function with selected columns example:
set.seed(7)
vals <- sample(c(1:20, NA, NA), 20)
sample <- matrix(vals, ncol = 5)
# Select columns 1, 3, 4
cols <- c(1, 3, 4)
rowcnts <- apply(sample[ , cols], 1, function(x) length(x[!is.na(x)]))
sample <- cbind(sample, rowcnts)
> sample
rowcnts
[1,] 10 15 16 NA 12 2
[2,] 19 8 14 18 9 3
[3,] 7 17 6 4 1 3
[4,] 2 3 13 NA 5 2
Upvotes: 0
Reputation: 4357
Using base R. First line checks all columns, second one checks columns by name, third might not work as good if the number of columns is substantial.
sample$z1 <- rowSums(!is.na(sample))
sample$z2 <- rowSums(!is.na(sample[c("x", "y")]))
sample$z3 <- is.finite(sample$x) + is.finite(sample$y)
> sample
# A tibble: 4 x 5
x y z1 z2 z3
<dbl> <dbl> <dbl> <dbl> <int>
1 1 5 2 2 2
2 2 NA 1 1 1
3 3 2 2 2 2
4 NA NA 0 0 0
Upvotes: 1
Reputation: 887058
We can use
library(dplyr)
sample %>%
rowwise %>%
mutate(z = sum(!is.na(cur_data()))) %>%
ungroup
-output
# A tibble: 4 x 3
# x y z
# <dbl> <dbl> <int>
#1 1 5 2
#2 2 NA 1
#3 3 2 2
#4 NA NA 0
If it is select columns
sample %>%
rowwise %>%
mutate(z = sum(!is.na(select(cur_data(), x:y))))
Or with rowSums
on a logical matrix
sample %>%
mutate(z = rowSums(!is.na(cur_data())))
-output
# A tibble: 4 x 3
# x y z
# <dbl> <dbl> <dbl>
#1 1 5 2
#2 2 NA 1
#3 3 2 2
#4 NA NA 0
Upvotes: 1