Reputation: 23
I am trying create an ensemble of lstm. Below is my implementation of one lstm:
def lstm_model(n_features, n_hidden_unit, learning_rate, p, recurrent_p):
model = keras.Sequential()
model.add(Masking(mask_value=-1, input_shape=(100, n_features)))
model.add(Bidirectional(LSTM(n_hidden_unit, input_shape=(None, n_features), return_sequences=True,
dropout = p, recurrent_dropout = recurrent_p)))
model.add(TimeDistributed(Dense(3, activation='softmax')))
model.compile(loss=CategoricalCrossentropy(from_logits=True),
optimizer=Adam(learning_rate=learning_rate),
metrics=['categorical_accuracy'])
return model
Then I trained a few lstm. The models are stored as a list then pass into the function below
def define_stacked_model(members):
for i in range(len(members)):
model = members[i]['model']
model.input._name = 'ensemble_' + str(i+1) + '_' + model.input.name
for layer in model.layers:
# make not trainable
layer.trainable = False
# rename to avoid 'unique layer name' issue
layer._name = 'ensemble_' + str(i+1) + '_' + layer.name
print(layer._name)
# define multi-headed input
ensemble_visible = [model_dictionary['model'].input for model_dictionary in members]
# concatenate merge output from each model
ensemble_outputs = [model_dictionary['model'].output for model_dictionary in members]
merge = tf.keras.layers.Concatenate(axis=2)(ensemble_outputs)
lstm_n_features = merge.shape[-1]
stack_lstm = Bidirectional(LSTM(25, input_shape=(None, lstm_n_features), return_sequences=True,
dropout = 0, recurrent_dropout = 0))(merge)
output = TimeDistributed(Dense(3, activation='softmax'))(stack_lstm)
model = Model(inputs=ensemble_visible, outputs=output)
# plot graph of ensemble
plot_model(model, show_shapes=True, to_file='model_graph.png')
rename(model, model.layers[1], 'new_name')
# compile
model.compile(loss=CategoricalCrossentropy(from_logits=True),
optimizer=Adam(learning_rate=learning_rate),
metrics=['categorical_accuracy'])
return model
The output shows the layer and input names are already changed
ensemble_1_masking_input:0
ensemble_1_masking
ensemble_1_bidirectional
ensemble_1_time_distributed
ensemble_2_masking_input_1:0
ensemble_2_masking
ensemble_2_bidirectional
ensemble_2_time_distributed
ensemble_3_masking_input_2:0
ensemble_3_masking
ensemble_3_bidirectional
ensemble_3_time_distributed
ensemble_4_masking_input_3:0
ensemble_4_masking
ensemble_4_bidirectional
ensemble_4_time_distributed
but there is a value error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-14-30bc0e96adc5> in <module>
25 #hidden = Dense(10, activation='relu')(merge)
26 output = TimeDistributed(Dense(3, activation='softmax'))(stack_lstm)
---> 27 model = Model(inputs=ensemble_visible, outputs=output)
28 #model = Model(inputs=ensemble_visible)
29 # plot graph of ensemble
~\anaconda3\envs\env_notebook\lib\site-packages\tensorflow\python\keras\engine\training.py in __init__(self, *args, **kwargs)
165
166 def __init__(self, *args, **kwargs):
--> 167 super(Model, self).__init__(*args, **kwargs)
168 _keras_api_gauge.get_cell('model').set(True)
169 # Model must be created under scope of DistStrat it will be trained with.
~\anaconda3\envs\env_notebook\lib\site-packages\tensorflow\python\keras\engine\network.py in __init__(self, *args, **kwargs)
171 'inputs' in kwargs and 'outputs' in kwargs):
172 # Graph network
--> 173 self._init_graph_network(*args, **kwargs)
174 else:
175 # Subclassed network
~\anaconda3\envs\env_notebook\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
454 self._self_setattr_tracking = False # pylint: disable=protected-access
455 try:
--> 456 result = method(self, *args, **kwargs)
457 finally:
458 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~\anaconda3\envs\env_notebook\lib\site-packages\tensorflow\python\keras\engine\network.py in _init_graph_network(self, inputs, outputs, name, **kwargs)
304
305 # Keep track of the network's nodes and layers.
--> 306 nodes, nodes_by_depth, layers, _ = _map_graph_network(
307 self.inputs, self.outputs)
308 self._network_nodes = nodes
~\anaconda3\envs\env_notebook\lib\site-packages\tensorflow\python\keras\engine\network.py in _map_graph_network(inputs, outputs)
1800 for name in all_names:
1801 if all_names.count(name) != 1:
-> 1802 raise ValueError('The name "' + name + '" is used ' +
1803 str(all_names.count(name)) + ' times in the model. '
1804 'All layer names should be unique.')
ValueError: The name "masking_input" is used 4 times in the model. All layer names should be unique.
I cant find where is this "masking_input" and how to change it.
Upvotes: 0
Views: 1434
Reputation: 21
Not sure if you ever fixed this, or if anyone else will find the same issue; I just spent hours on the same problem and finally found the solution.
When listing layers for renaming, instead of model.layers
, you have to use model._layers
, otherwise the input name remains unchanged. Changing model.inputs.name does not work and produces the mentioned error.
Upvotes: 2