Reputation: 81
I have estimated a complex hierarchical model with many random effects, but don't really know what the best approach is to checking for convergend. I have complex longitudinal data from a few hundred individuals and estimate quite a few parameters for every individual. Because of that, I have way to many traceplots to inspect visually. Or should I really spend a day going through all the traceplots? What would be a better way to check for convergence? Do I have to calculate Gelman and Rubin's Rhat for every parameter on the person level? And when can I conclude that the model converged? When absolutely all of the thousends of parameters reached convergence? Is it even sensible to expect that? Or is there something like "overall convergence"? And what does it mean when some person-level parameters did not converge? Does it make sense to use autorun.jags
from the R2jags
package with such a model or will it just run for ever? I know, these are a lot of question, but I just don't know how to approach that.
Upvotes: 3
Views: 798
Reputation: 59535
The measure I am using for convergence is a potential scale reduction factor (psrf)* using the gelman.diag function from the R package coda
.
But nevertheless, I am also quickly visually inspecting all the traceplots, even though I also have tens/hundreds of them. It can be really fast if you put them in PNG files and then quickly go through them using e.g. IrfanView (let me know if you need me to expand on this).
The reason you should inspect the traceplots is pretty well described by an example from Marc Kery (author of great Bayesian books): see "Never blindly trust Rhat for convergence in a Bayesian analysis", here I include a self explanatory image from this email:
This is related to Rhat statistics while I use psrf, but it's pretty likely that psrf suffers from this too... and better to check the chains.
Upvotes: 2