Reputation: 51
I have a pandas dataframe that has a column whose values are lists and where another column is a date. I would like to create a dataframe that counts the elements of the lists by date.
The dataframe looks like:
pd.DataFrame(
data={
"col1": ["['a','b']", "['b','c']", "['a','c']", "", "['b']"],
"col2": ["2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05"],
},
index=[0, 1, 2, 3, 4],
)
What I would like the dataframe to look like is:
pd.DataFrame(
data={"a": [1, 0, 1, 0, 0], "b": [1, 1, 0, 0, 1], "c": [0, 1, 1, 0, 0]},
index=["2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05"],
)
Any thoughts on how to do this kind of transformation?
Upvotes: 1
Views: 728
Reputation: 11504
You could do this this way:
df = pd.DataFrame(
data={
"col1": [['a','b'], ['b','c'], ['a','c'], ['c'], ['b']],
"col2": ["2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05"],
}
)
df2 = df.explode('col1').reset_index(drop=True)
df2["value"]=1
pd.pivot_table(df2, values="value", index=["col2"], columns=["col1"], aggfunc=lambda x: 1, fill_value=0)
Upvotes: 2
Reputation: 20669
You can use pd.crosstab
here.
df['col1'] = df['col1'].str.findall('\w+')
df_ = df.explode('col1')
pd.crosstab(df_['col2'], df_['col1']).reindex(df_['col2'].unique()).fillna(0)
col1 a b c
col2
2020-01-01 1.0 1.0 0.0
2020-01-02 0.0 1.0 1.0
2020-01-03 1.0 0.0 1.0
2020-01-04 0.0 0.0 0.0
2020-01-05 0.0 1.0 0.0
Upvotes: 2
Reputation: 150785
You can use extractall
to extract the values inside ''
, then counts the values with groupby
:
out= (df.col1.str.extractall("'([^']*)'")
.groupby(level=0)[0].value_counts()
.unstack(level=1,fill_value=0)
.reindex(df.index, fill_value=0)
)
out.index= df['col2']
print(out)
Output:
0 a b c
col2
2020-01-01 1 1 0
2020-01-02 0 1 1
2020-01-03 1 0 1
2020-01-04 0 0 0
2020-01-05 0 1 0
Upvotes: 2