Reputation: 1132
I am trying to get the ROC curve of the model I have obtained on the test dataset.
Yet a get an error:
Setting levels: control = negative, case = positive
Error in roc.default(testing_data$tested, predict_rf) :
Predictor must be numeric or ordered.
I have followed the below answers, yet did not succeed.
SVM in R: "Predictor must be numeric or ordered."
Failure plotting ROC curve using pROC
I have a similar example worked out few months ago on my posting by someone else on this link:
However, I take 'stupidWolf' example and post it here for the sake of reproducibility since I had a previous problem with his answer. Yet, end up into another problem when trying to get my ROC curve.
# choose a sample
idx = sample(nrow(iris),100)
data = iris
data$Petal.Length[sample(nrow(data),10)] = NA
data$tested = factor(ifelse(data$Species=="versicolor","positive","negative"))
data = data[,-5]
training_data = data[idx,]
testing_data= data[-idx,]
# train data
rf <- caret::train(tested ~., data = training_data,
method = "rf",
trControl = ctrlInside,
metric = "ROC",
na.action = na.exclude)
# test the model on test data
colnames(evalResult.rf)[max.col(evalResult.rf)]
testing_data = testing_data[complete.cases(testing_data),]
evalResult.rf <- predict(rf, testing_data, type = "prob")
predict_rf <- factor(colnames(evalResult.rf)[max.col(evalResult.rf)])
cm_rf_forest <- confusionMatrix(predict_rf, testing_data$tested, "positive")
# get the roc
library(pROC)
rfROCt <- pROC::roc(testing_data$tested, predict_rf)
And get the error :
Setting levels: control = negative, case = positive
Error in roc.default(testing_data$tested, predict_rf) :
Predictor must be numeric or ordered.
Upvotes: 0
Views: 4169
Reputation: 46898
The second argument should be a probability for the prediction, so if you look at the example:
evalResult.rf <- predict(rf, testing_data, type = "prob")
head(evalResult.rf)
negative positive
2 0.968 0.032
8 1.000 0.000
9 0.996 0.004
13 0.990 0.010
The second column is the probability of the positive class.
So you use it like this
pROC::roc(testing_data$tested,evalResult.rf[,2])
Setting levels: control = negative, case = positive
Setting direction: controls < cases
Call:
roc.default(response = testing_data$tested, predictor = evalResult.rf[, 2])
Data: evalResult.rf[, 2] in 24 controls (testing_data$tested negative) < 22 cases (testing_data$tested positive).
Area under the curve: 0.9924
Upvotes: 3