Reputation: 51
I have an app based on qt (qcustomplot) that prints two different graphs. They have one point of intersection. How to find x and y coordinates of this point?
Upvotes: 1
Views: 372
Reputation: 98505
This doesn't have much to do with plotting, since you'd be investigating the underlying data. Let's say that we can interpolate between data points using lines, and the data sets are single-valued (i.e. for any x
or key
coordinate, there's only one value).
Let's sketch a solution. First, some preliminaries, and we detect whether QCustomPlot was included so that the code can be tested without it - the necessary classes are mocked:
#define _USE_MATH_DEFINES
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <optional>
#include <type_traits>
#include <vector>
//#include "qcustomplot.h"
constexpr bool debugOutput = false;
#ifndef QCP_PLOTTABLE_GRAPH_H
struct QCPGraphData {
double key, value;
QCPGraphData() = default;
QCPGraphData(double x, double y) : key(x), value(y) {}
};
#endif
auto keyLess(const QCPGraphData &l, const QCPGraphData &r) { return l.key < r.key; }
#ifndef QCP_PLOTTABLE_GRAPH_H
template <typename T> struct QCPDataContainer : public std::vector<T> {
using std::vector<T>::vector;
void sort() { std::sort(this->begin(), this->end(), keyLess); }
};
using QCPGraphDataContainer = QCPDataContainer<QCPGraphData>;
#endif
using Point = QCPGraphData;
using Container = QCPGraphDataContainer;
static_assert(std::is_copy_constructible_v<Point>, "Point must be copy-constructible");
Some helper functions:
std::ostream &operator<<(std::ostream &os, const Point &p) {
return os << "(" << p.key << ", " << p.value << ")";
}
template <class T> bool has_unique_keys(const T &v) {
constexpr auto keyEqual = [](const Point &l, const Point &r) { return l.key == r.key; };
return std::adjacent_find(std::begin(v), std::end(v), keyEqual) == std::end(v);
}
template <class T> bool has_valid_points(const T& v) {
constexpr auto isValid = [](const Point &p) { return std::isfinite(p.key) && std::isfinite(p.value); };
return std::all_of(std::begin(v), std::end(v), isValid);
}
The line segment intersection finder:
// intersection of two line segments
std::optional<Point> intersection(const Point &a1, const Point &a2, const Point &b1, const Point &b2)
{
auto p1 = a1, p2 = a2, p3 = b1, p4 = b2;
assert(p1.key <= p2.key);
assert(p3.key <= p4.key);
if (debugOutput) std::cout << p1 << "-" << p2 << ", " << p3 << "-" << p4;
auto const denom = (p1.key - p2.key)*(p3.value - p4.value)
- (p1.value - p2.value)*(p3.key - p4.key);
if (fabs(denom) > 1e-6*(p2.key - p1.key)) {
// the lines are not parallel
auto const scale = 1.0/denom;
auto const q = p1.key*p2.value - p1.value*p2.key;
auto const r = p3.key*p4.value - p3.value*p4.key;
auto const x = (q*(p3.key-p4.key) - (p1.key-p2.key)*r) * scale;
if (debugOutput) std::cout << " x=" << x << "\n";
if (p1.key <= x && x <= p2.key && p3.key <= x && x <= p4.key) {
auto const y = (q*(p3.value-p4.value) - (p1.value-p2.value)*r) * scale;
return std::optional<Point>(std::in_place, x, y);
}
}
else if (debugOutput) std::cout << "\n";
return std::nullopt;
}
An algorithm that walks down two lists of points sorted in ascending key
(x
) order, and finds all intersections of line segments spanning consecutive point pairs from these two lists:
std::vector<Point> findIntersections(const Container &a_, const Container &b_)
{
if (a_.size() < 2 || b_.size() < 2) return {};
static constexpr auto check = [](const auto &c){
assert(has_valid_points(c));
assert(std::is_sorted(c.begin(), c.end(), keyLess));
assert(has_unique_keys(c));
};
check(a_);
check(b_);
bool aFirst = a_.front().key <= b_.front().key;
const auto &a = aFirst ? a_ : b_, &b = aFirst ? b_ : a_;
assert(a.front().key <= b.front().key);
if (a.back().key < b.front().key) return {}; // the key spans don't overlap
std::vector<Point> intersections;
auto ia = a.begin(), ib = b.begin();
Point a1 = *ia++, b1 = *ib++;
while (ia->key < b1.key) a1=*ia++; // advance a until the key spans overlap
for (Point a2 = *ia, b2 = *ib;;) {
auto const ipt = intersection(a1, a2, b1, b2);
if (ipt)
intersections.push_back(*ipt);
bool advanceA = a2.key <= b2.key, advanceB = b2.key <= a2.key;
if (advanceA) {
if (++ia == a.end()) break;
a1 = a2, a2 = *ia;
}
if (advanceB) {
if (++ib == b.end()) break;
b1 = b2, b2 = *ib;
}
}
return intersections;
}
And a more generic version that can also sort the points in ascending key
order:
auto findIntersections(Container &d1, Container &d2, bool presorted)
{
if (!presorted) {
d1.sort();
d2.sort();
}
return findIntersections(d1, d2);
}
And now some simple demonstration:
template <typename Fun>
Container makeGraph(double start, double step, double end, Fun &&fun) {
Container result;
int i = 0;
for (auto x = start; x <= end; x = ++i * step)
result.emplace_back(x, fun(x));
return result;
}
int main()
{
for (auto step2: {0.1, 0.1151484584}) {
auto sinPlot = makeGraph(-2*M_PI, 0.1, 3*M_PI, sin);
auto cosPlot = makeGraph(0., step2, 2*M_PI, cos);
auto intersections = findIntersections(sinPlot, cosPlot);
std::cout << "Intersections:\n";
for (auto &ip : intersections)
std::cout << " at " << ip << "\n";
}
}
Demo output:
Intersections:
at (0.785613, 0.706509)
at (3.92674, -0.706604)
Intersections:
at (0.785431, 0.706378)
at (3.92693, -0.706732)
Upvotes: 2