Reputation: 421
I applied RNN for the resampling lists, and three out of five lists didn't produce predictions, and want to remove the empty lists.
# A tibble: 5 x 3
splits id predict
<list> <chr> <list>
1 <split [24/12]> Slice1 <tibble [48 × 3]>
2 <split [24/12]> Slice2 <tibble [48 × 3]>
3 <split [24/12]> Slice3 <lgl [1]>
4 <split [24/12]> Slice4 <lgl [1]>
5 <split [24/12]> Slice5 <lgl [1]>
So tried to remove the list 3,4,5 using discard() or Filter(), but I failed to subset list from tibbles.
> discard(sample_predictions, ~nrow(.) == 0)
Error: Predicate functions must return a single `TRUE` or `FALSE`, not a logical vector of length 0
Backtrace:
1. purrr::discard(sample_predictions, ~nrow(.) == 0)
2. purrr:::probe(.x, .p, ...)
3. purrr::map_lgl(.x, .p, ...)
4. purrr:::.f(.x[[i]], ...)
> Filter(function(x) dim[x]>0,sample_predictions )
Error in dim[x] : object of type 'builtin' is not subsettable
Upvotes: 1
Views: 150
Reputation: 887531
Here, we could use map
. Based on the data showed, some of the list
elements are logical vector of length
1 instead of tibble
. An option is to filter
by looping over the list
with map
and check if it is a tibble (is_tibble
)
library(dplyr)
library(purrr)
sample_predictions %>%
filter(map_lgl(predict, is_tibble))
Or using base R
sample_predictions[sapply(sample_predictions$predict, Negate(is.logical)),]
sample_predictions <- tibble(predict = list(tibble(col1 = 1:5),
tibble(col1 = 1:3), TRUE))
Upvotes: 2